A Quantum Programming Language for Coherent
Control

Kathleen Barsse Romain Péchoux Simon Perdrix

Inria team Mocqua, LORIA, Nancy

Journées Informatique Quantique
January 15, 2026

1/21

Classical and quantum control

e “Quantum data, classical control”

The execution flow is based on classical information (for instance
measurement outcomes).

2/21

Classical and quantum control

e “Quantum data, classical control”

The execution flow is based on classical information (for instance
measurement outcomes).

o “Quantum data, quantum control”

The execution flow is based on quantum information. We allow for
the superposition of processes during the execution of a program.

2/21

Classical and quantum control

e “Quantum data, classical control”

The execution flow is based on classical information (for instance
measurement outcomes).

o “Quantum data, quantum control”

The execution flow is based on quantum information. We allow for
the superposition of processes during the execution of a program.

Elements of the control structure:

o if statements
@ while statements

@ lteration

2/21

An example of quantum control: gcase

The operation gcase acts on a pair of qubits (“control” and “target”).
For U and V unitary:

@ If the control qubit is in state |0), apply U to the target qubit.
@ If the control qubit is in state |1), apply V to the target qubit.
@ Otherwise, apply U and V in a coherent superposition.

3/21

An example of quantum control: qcase

The operation gcase acts on a pair of qubits (“control” and “target”).
For U and V unitary:

@ If the control qubit is in state |0), apply U to the target qubit.
@ If the control qubit is in state |1), apply V to the target qubit.

@ Otherwise, apply U and V in a coherent superposition.
uilo

qcase(U, V) =
0|V

3/21

An example of quantum control: qcase

The operation gcase acts on a pair of qubits (“control” and “target”).
For U and V unitary:

@ If the control qubit is in state |0), apply U to the target qubit.
@ If the control qubit is in state |1), apply V to the target qubit.

@ Otherwise, apply U and V in a coherent superposition.
uilo

qcase(U, V) =
0|V

The goal is to develop a programming language that supports
coherent control.

3/21

N
Main difficulties

Combining gcase with...
@ Measurement

@ Recursion

4/21

N
Main difficulties

Combining gcase with...
@ Measurement

o Defining gqcase beyond the unitary case: qcase(U, V) =

@ Recursion

4/21

N
Main difficulties

Combining gcase with...
@ Measurement

e Defining qcase beyond the unitary case: qcase(U, V) =

@ Recursion
o Incompatibility of qcase with the Lowner ordering.

Costin B3descu and Prakash Panangaden. “Quantum alternation: Prospects and
problems”. In: 12th International Workshop on Quantum Physics and Logic (2015)

4/21

A programming language for quantum control

A programming language for quantum control

5/21

A programming language for quantum control
Syntax

The syntax is inspired by the programming language QPL.

Statements

S, 50,51 = skip | new gbit q | discard q | gx=U | So; S1
| meas q (0 — Sp,1 — Si1) | while g do S
| qcase q (0 — Sp,1 — S1)

where U is a single-qubit unitary map.

Peter Selinger. “Towards a quantum programming language”

. In: Mathematical Structures in
Computer Science 14.4 (2004), pp. 527-586

6/21

A programming language for quantum control

Syntax

The syntax is inspired by the programming language QPL.
Statements

S,S0,S51 = skip | new qbit q | discard q | gx=U | Sp; S

| meas q (0 — Sp,1 — S;) | while qdo S
| qcase q (0 — Sp,1 — S1)

where U is a single-qubit unitary map.

@ meas q (0 — Sp,1 — S1) the qubit ¢, and executes Sy or S1
depending on the outcome.

6/21

A programming language for quantum control

Syntax

The syntax is inspired by the programming language QPL.
Statements

S,S0,S51 = skip | new qbit q | discard q | gx=U | Sp; S

| meas q (0 — Sp,1— Si) | while g do S
| qcase q (0 — Sp,1 — S1)

where U is a single-qubit unitary map.

@ meas q (0 — Sp,1 — S1) the qubit ¢, and executes Sy or S1
depending on the outcome.

@ while q do S is a loop where ¢ is measured at every iteration.

6/21

A programming language for quantum control
Syntax

The syntax is inspired by the programming language QPL.

Statements

S, 50,51 ::= skip | new gbit q | discard q | gx=U | So; S1
| meas q (0 — Sp,1— Si) | while g do S
| qcase q (0 — Sp,1 — S1)

where U is a single-qubit unitary map.
@ meas q (0 — Sp,1 — S1) the qubit ¢, and executes Sy or S1
depending on the outcome.

@ while q do S is a loop where ¢ is measured at every iteration.

@ qcase q (0 — Sp,1 — S;) implements quantum control: Sy and S;
are executed in superposition depending on the state of q.

6/21

Example: CNOT

¢ ——

7/21

Example: CNOT

¢ ——

ScnoT = qcease ¢ (0 — skip, 1 — tx=X)

01
where X := [1 0}

7/21

Operational semantics

Operational semantics

8/21

Operational semantics

Defining an operational semantics

The goal is to define the evolution of |¢)) induced by a program
statement S:

[S, 1)) = [¢)

9/21

Operational semantics

Defining an operational semantics

The goal is to define the evolution of |¢)) induced by a program
statement S:

[S, 1)) = [¢)

[new gbit q, [))] = [0)q ® |¢)) [ax=U, [{)] = Uqlt))

9/21

Operational semantics

Defining an operational semantics

The goal is to define the evolution of |¢)) induced by a program
statement S:

[S, 1)) = [¢)

[new gbit q, [))] = [0)q ® |¢)) [ax=U, [{)] = Uqlt))

[0, [0)(Olq|¢)] — |¢)

[meas q (0 — So,1 — S1), |[¥)] — [¢)
[S1, 1) (Llq[)] = [¥)

[meas q (0 — So,1 — S1),[¥)] = [¢)

(Mo)

(M)

9/21

Operational semantics

Defining an operational semantics

The goal is to define the evolution of |¢)) induced by a program
statement S:

[S, 1)) = [¢)

[new gbit q, [¢)] — [0)q @ [¢) [ax=U, [)] = Uqgltp)

[0, [0)(Olq|¢)] — |¢)

[meas q (0 — So,1 — S1), |[¥)] — [¢)
[S1, 1) (Llq[)] = [¥)

[meas q (0 — So,1 — S1),[¥)] = [¢)

(Mo)

(M)

A transition occurs with probability ‘I‘Ilqu/)/;\'\l;'

9/21

Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 — Sp,1 — S1).

10/21

Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 — Sp,1 — S1).

o If the input is |0)q ® [¢)) :

10/21

Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 — Sp,1 — S1).

o If the input is |0)q ® [¢)) :

—1 S —

— S5 —

10/21

Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 — Sp,1 — S1).

o If the input is |0)q ® [¢)) :

|"/’> — 50 —

— S5 —

10/21

Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 — Sp,1 — S1).

o If the input is |0)q ® [¢)) :

|"/’> — 50 —

gmpty 51

10/21

Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 — Sp,1 — S1).

o If the input is [0)q ® |¢) : e If the inputis [1)q @ |¢)) :

|"/’> — 50 —

gmpty 51

10/21

Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 — Sp,1 — S1).

o If the input is [0)q ® |¢) : e If the inputis [1)q @ |¢)) :
[¥) —f Sy +— —i S —
ot —1 S —1 5

10/21

Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 — Sp,1 — S1).

o If the input is [0)q ® |¢) : e If the inputis [1)q @ |¢)) :
[¥) —f Sy +— —i S —
S —1 51— W) — S —

10/21

Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 — Sp,1 — S1).

o If the input is [0)q ® |¢) : e If the inputis [1)q @ |¢)) :
lv) — So — Sapat —1 So —
St —1 S1 F— V) —f & —

10/21

Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 — Sp,1 — S1).

o If the input is [0)q ® |¢) : e If the inputis [1)q @ |¢)) :
V) —f So — Sapat —1 So —
ot —1 S) — S —

We define the action of S on the regular input |¢)) and on the empty
input.

10/21

Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 — Sp,1 — S1).

o If the input is [0)q ® |¢) : e If the inputis [1)q @ |¢)) :
V) —f So — Sapat —1 So —
St —1 S1 F— V) —f & —

We define the action of S on the regular input |¢)) and on the empty
input.

Therefore, we define default transitions.

10/21

Operational semantics

Transition system

Transitions have the form
[S, [¥)] = [¥)

e v € {0,1} answers the question, “Is this the default transition?”

11/21

Operational semantics

Transition system
Transitions have the form
[S, [¥)] = [¥)

e v € {0,1} answers the question, “Is this the default transition?”

[new gbit q, [)] = [0)q @) [ax=U, [¢)] = Uqlt))

11/21

Operational semantics

Transition system
Transitions have the form
[S, [¥)] = [¥)

e v € {0,1} answers the question, “Is this the default transition?”

[new gbit q, [)] = [0)q @) [ax=U, [¢)] = Uqlt))

[So. 10){0lq|1)] = [¢'

)
[meas q (0 — So,1 — S1), |9)
[S1, [1)(L]ql)] = [¢)

)

[meas q (0 — So,1— S1), [¥)] > [v)

= 1) (My) is the default

11/21

Operational semantics

Transition system
Transitions have the form
[S, [¥)] = [¥)

e v € {0,1} answers the question, “Is this the default transition?”

[new gbit q, [)] = [0)q @) [ax=U, [¢)] = Uqlt))

[S0. 10) (0lq|¥)] = [4')

[meas q (0 — So, 1 — S1), [4)] = [¢)
)
)

S 11)Laf)] % |4 (Mo) s the default

[meas q (0 — So,1— S1), [¥)] > [v)

[So, (Olq¥)] =3 [t0) [S1, (Llqlw)] = |eb1)
[qcase q (0 — So, 1 — S1), [1h)] == 141[0)q ® [tho) + 1o|1)q @ [¢1) 11 /21

Denotational semantics

Denotational semantics

12/21

Denotational semantics

Denotational semantics

The goal is to assign to each program a mathematical operation
that describes its behavior.

o First idea: Interpret programs as completely positive trace
non-increasing maps:

[PI=cC

13/21

Denotational semantics

Semantics of qcase?

14 /21

Denotational semantics

Semantics of qcase?

@ On unitaries:

gcase(U, V) = [l(')/ \0/}

14/21

Denotational semantics

Semantics of qcase?

@ On unitaries:

qease(U, V) — [U 0}

0 Vv
e On unitary operations U = U(-)UT and V = V/(-)VT:

14/21

Denotational semantics

Semantics of qcase?

@ On unitaries:

qease(U, V) — [U 0}

0 VvV
e On unitary operations U = U(-)UT and V = V/(-)VT:

VpsUT Vpu Vi

f t
QCASE(U,V) = [f’l 02] N {UmU Up2v]
P3 P4

14/21

Denotational semantics

Semantics of qcase?

@ On unitaries:

qease(U, V) — [U 0}

0 VvV
e On unitary operations U = U(-)UT and V = V/(-)VT:

[Pl Pz]H{UmUT UszT]

CASE(U,V) =
QCASE(U.V) p3 pa VpsUT Vpu Vi

@ Therefore:

QCASE(C,D) = [Z’; Zi] s [C(fl) D(; 4)] 5

14/21

Denotational semantics

Semantics of qcase?

@ On unitaries:

qease(U, V) — [U 0}

0 VvV
e On unitary operations U = U(-)UT and V = V/(-)VT:

T 1
[Pl Pz]H{UmU Usz]

CASE(U,V) =
QCASE(U. V) p3 pa VpsUT Vpu Vi

@ Therefore:

QCASE(C,D) = [Z’; Zi] s [C(fl) D(Z 4)] 5

This is not possible: QCASE(C, D) is ill-defined.

14/21

Denotational semantics

Solution: We interpret a statement S as a vacuum-extended operation.
The domain is extended by a vector |vac) in a one-dimensional Hilbert
space Vac.

15/21

Denotational semantics

Solution: We interpret a statement S as a vacuum-extended operation.
The domain is extended by a vector |vac) in a one-dimensional Hilbert
space Vac.

Vacuum-extended operations

A vacuum extension of a quantum operation C is a quantum operation C
such that:

o On regular states: C(p) = C(p).
@ On the vacuum state: C(|vac)(vac|) = |vac)(vac|.

Hlér Kristjansson et al. “Resource theories of communication”. In: New Journal of Physics 22.7
(2020), p. 073014

15/21

Denotational semantics

Solution: We interpret a statement S as a vacuum-extended operation.
The domain is extended by a vector |vac) in a one-dimensional Hilbert
space Vac.

Vacuum-extended operations

A vacuum extension of a quantum operation C is a quantum operation C
such that:

o On regular states: C(p) = C(p).

@ On the vacuum state: C(|vac)(vac|) = |vac)(vac|.

C is characterized by a pair (C, F), where F is called a transformation
matrix.

15/21

Denotational semantics

Solution: We interpret a statement S as a vacuum-extended operation.
The domain is extended by a vector |vac) in a one-dimensional Hilbert
space Vac.

Vacuum-extended operations

A vacuum extension of a quantum operation C is a quantum operation C
such that:
o On regular states: C(p) = C(p).

@ On the vacuum state: C(|vac)(vac|) = |vac)(vac|.

C is characterized by a pair (C, F), where F is called a transformation
matrix.

| QCASE((C, F), (D, G)) is well defined. |

QCASE((C. F). (D, G)) = ([Z Zﬂ ~ [gg.lf)T I;p(i)f)l] ’ ['(E) gD

15/21

Denotational semantics

Denotational semantics

Interpretation of programs

A statement S is interpreted as a vacuum-extended operation

[S1=(C.F).

16/21

Denotational semantics

Denotational semantics

Interpretation of programs
A statement S is interpreted as a vacuum-extended operation

[S1=(C.F).

Some statement interpretations:

[new gbit q] := (|0)(0]q ® —,[0)q ® Ir)
[ax=U] = (Ua()UL, U)
[acase q (0 — P,1— Q)] := QCASE[[P], [Q]]
[while g do S] := Ifp(F.)

where ﬁqs(C, F) := measq((Z,1),(C, F)o [S]].

16/21

Results

17/21

Universality and adequacy

Universality

For all vacuum extension (C, F), there exists a statement S whose
interpretation satisfies [S] = (C, F).

18/21

Universality and adequacy

Universality
For all vacuum extension (C, F), there exists a statement S whose
interpretation satisfies [S] = (C, F).

Adequacy
The operational and denotational semantics describe the same behavior of
programs.

18/21

Full abstraction

S and S’ are observationally equivalent (S = S’) if their behavior is
indistinguishable in any context.

Full abstraction

S~S iff [P]=][Q]

19/21

Full abstraction
S and S’ are observationally equivalent (S = S’) if their behavior is
indistinguishable in any context.

Full abstraction

S~S iff [P]=][Q]

Exemples :

new gbit q; discard q ~ skip

19/21

Full abstraction
S and S’ are observationally equivalent (S = S’) if their behavior is
indistinguishable in any context.

Full abstraction

S~S iff [P]=][Q]

Exemples :
new gbit q; discard q ~ skip

qcase q (0 — Sp, 1 — S;1);qcase q (0 — S}, 1 — S7)

19/21

Full abstraction

S and S’ are observationally equivalent (S = S’) if their behavior is
indistinguishable in any context.

Full abstraction

S~S iff [P]=][Q]

Exemples :
new gbit q; discard q ~ skip

qcase q (0 — Sp, 1 — S;1);qcase q (0 — S}, 1 — S7)

~
~

qcase q (0 — So; Sp, 1 — S1;57)

19/21

Full abstraction

S and S’ are observationally equivalent (S = S’) if their behavior is
indistinguishable in any context.

Full abstraction

S~S iff [P]=][Q]

Exemples :
new gbit q; discard q ~ skip

qcase q (0 — Sp, 1 — S;1);qcase q (0 — S}, 1 — S7)

~
~

qcase q (0 — So; Sp, 1 — S1;57)

qcase q (0 - S, 1+ S)# S in general

19/21

Conlusion

Conlusion

20/21

Conlusion

Conclusion

We introduced a programming language combining gcase, measurement
and recursion.

21/21

Conlusion

Conclusion

We introduced a programming language combining gcase, measurement
and recursion.

The semantics of qcase requires some extra information:
@ Default transitions in the operational semantics,

@ Transformation matrices in the denotational semantics.

21/21

Conlusion

Conclusion

We introduced a programming language combining gcase, measurement
and recursion.
The semantics of qcase requires some extra information:

@ Default transitions in the operational semantics,

@ Transformation matrices in the denotational semantics.

Results:
© Universality,

@ Adequacy between the two semantics,
© Full abstraction.

21/21

Conlusion

Conclusion

We introduced a programming language combining gcase, measurement
and recursion.

The semantics of qcase requires some extra information:
@ Default transitions in the operational semantics,

@ Transformation matrices in the denotational semantics.

Results:
© Universality,

@ Adequacy between the two semantics,
© Full abstraction.

Questions?

21/21

	A programming language for quantum control
	Operational semantics
	Denotational semantics
	Results
	Conlusion

