
A Quantum Programming Language for Coherent
Control

Kathleen Barsse Romain Péchoux Simon Perdrix

Inria team Mocqua, LORIA, Nancy

Journées Informatique Quantique

January 15, 2026

1 / 21



Classical and quantum control

“Quantum data, classical control”

The execution flow is based on classical information (for instance
measurement outcomes).

“Quantum data, quantum control”

The execution flow is based on quantum information. We allow for
the superposition of processes during the execution of a program.

Elements of the control structure:

if statements

while statements

Iteration

2 / 21



Classical and quantum control

“Quantum data, classical control”

The execution flow is based on classical information (for instance
measurement outcomes).

“Quantum data, quantum control”

The execution flow is based on quantum information. We allow for
the superposition of processes during the execution of a program.

Elements of the control structure:

if statements

while statements

Iteration

2 / 21



Classical and quantum control

“Quantum data, classical control”

The execution flow is based on classical information (for instance
measurement outcomes).

“Quantum data, quantum control”

The execution flow is based on quantum information. We allow for
the superposition of processes during the execution of a program.

Elements of the control structure:

if statements

while statements

Iteration

2 / 21



An example of quantum control: qcase

The operation qcase acts on a pair of qubits (“control” and “target”).
For U and V unitary:

If the control qubit is in state |0⟩, apply U to the target qubit.

If the control qubit is in state |1⟩, apply V to the target qubit.

Otherwise, apply U and V in a coherent superposition.

qcase(U,V ) :=

 U 0

0 V


The goal is to develop a programming language that supports
coherent control.

3 / 21



An example of quantum control: qcase

The operation qcase acts on a pair of qubits (“control” and “target”).
For U and V unitary:

If the control qubit is in state |0⟩, apply U to the target qubit.

If the control qubit is in state |1⟩, apply V to the target qubit.

Otherwise, apply U and V in a coherent superposition.

qcase(U,V ) :=

 U 0

0 V



The goal is to develop a programming language that supports
coherent control.

3 / 21



An example of quantum control: qcase

The operation qcase acts on a pair of qubits (“control” and “target”).
For U and V unitary:

If the control qubit is in state |0⟩, apply U to the target qubit.

If the control qubit is in state |1⟩, apply V to the target qubit.

Otherwise, apply U and V in a coherent superposition.

qcase(U,V ) :=

 U 0

0 V


The goal is to develop a programming language that supports
coherent control.

3 / 21



Main difficulties

Combining qcase with...

1 Measurement

2 Recursion

4 / 21



Main difficulties

Combining qcase with...
1 Measurement

Defining qcase beyond the unitary case: qcase(U,V ) =

 U 0

0 V


2 Recursion

4 / 21



Main difficulties

Combining qcase with...
1 Measurement

Defining qcase beyond the unitary case: qcase(U,V ) =

 U 0

0 V


2 Recursion

Incompatibility of qcase with the Löwner ordering.

Costin Bădescu and Prakash Panangaden. “Quantum alternation: Prospects and
problems”. In: 12th International Workshop on Quantum Physics and Logic (2015)

4 / 21



A programming language for quantum control

A programming language for quantum control

5 / 21



A programming language for quantum control

Syntax

The syntax is inspired by the programming language QPL.

Statements

S ,S0,S1 ::= skip | new qbit q | discard q | q∗=U | S0;S1
| meas q (0 → S0, 1 → S1) | while q do S

| qcase q (0 → S0, 1 → S1)

where U is a single-qubit unitary map.

Peter Selinger. “Towards a quantum programming language”. In: Mathematical Structures in
Computer Science 14.4 (2004), pp. 527–586

meas q (0 → S0, 1 → S1) the qubit q, and executes S0 or S1 depending on the outcome.

while q do S is a loop where q is measured at every iteration.

qcase q (0 → S0, 1 → S1) implements quantum control: S0 and S1 are executed in
superposition depending on the state of q.

6 / 21



A programming language for quantum control

Syntax

The syntax is inspired by the programming language QPL.

Statements

S ,S0,S1 ::= skip | new qbit q | discard q | q∗=U | S0;S1
| meas q (0 → S0, 1 → S1) | while q do S

| qcase q (0 → S0, 1 → S1)

where U is a single-qubit unitary map.

meas q (0 → S0, 1 → S1) the qubit q, and executes S0 or S1
depending on the outcome.

while q do S is a loop where q is measured at every iteration.

qcase q (0 → S0, 1 → S1) implements quantum control: S0 and S1
are executed in superposition depending on the state of q.

6 / 21



A programming language for quantum control

Syntax

The syntax is inspired by the programming language QPL.

Statements

S ,S0,S1 ::= skip | new qbit q | discard q | q∗=U | S0;S1
| meas q (0 → S0, 1 → S1) | while q do S

| qcase q (0 → S0, 1 → S1)

where U is a single-qubit unitary map.

meas q (0 → S0, 1 → S1) the qubit q, and executes S0 or S1
depending on the outcome.

while q do S is a loop where q is measured at every iteration.

qcase q (0 → S0, 1 → S1) implements quantum control: S0 and S1
are executed in superposition depending on the state of q.

6 / 21



A programming language for quantum control

Syntax

The syntax is inspired by the programming language QPL.

Statements

S ,S0,S1 ::= skip | new qbit q | discard q | q∗=U | S0;S1
| meas q (0 → S0, 1 → S1) | while q do S

| qcase q (0 → S0, 1 → S1)

where U is a single-qubit unitary map.

meas q (0 → S0, 1 → S1) the qubit q, and executes S0 or S1
depending on the outcome.

while q do S is a loop where q is measured at every iteration.

qcase q (0 → S0, 1 → S1) implements quantum control: S0 and S1
are executed in superposition depending on the state of q.

6 / 21



A programming language for quantum control

Example: CNOT

t

c

SCNOT := qcase c (0 → skip, 1 → t∗=X )

where X :=

[
0 1
1 0

]
.

7 / 21



A programming language for quantum control

Example: CNOT

t

c

SCNOT := qcase c (0 → skip, 1 → t∗=X )

where X :=

[
0 1
1 0

]
.

7 / 21



Operational semantics

Operational semantics

8 / 21



Operational semantics

Defining an operational semantics

The goal is to define the evolution of |ψ⟩ induced by a program
statement S :

[S , |ψ⟩] → |ψ′⟩

[new qbit q, |ψ⟩] → |0⟩q ⊗ |ψ⟩ [q∗=U, |ψ⟩] → Uq|ψ⟩

[S0, |0⟩⟨0|q|ψ⟩] → |ψ′⟩
(M0)

[meas q (0 → S0, 1 → S1), |ψ⟩] → |ψ′⟩

[S1, |1⟩⟨1|q|ψ⟩] → |ψ′⟩
(M1)

[meas q (0 → S0, 1 → S1), |ψ⟩] → |ψ′⟩

A transition occurs with probability ∥|ψ′⟩∥2
∥|ψ⟩∥2 .

9 / 21



Operational semantics

Defining an operational semantics

The goal is to define the evolution of |ψ⟩ induced by a program
statement S :

[S , |ψ⟩] → |ψ′⟩

[new qbit q, |ψ⟩] → |0⟩q ⊗ |ψ⟩ [q∗=U, |ψ⟩] → Uq|ψ⟩

[S0, |0⟩⟨0|q|ψ⟩] → |ψ′⟩
(M0)

[meas q (0 → S0, 1 → S1), |ψ⟩] → |ψ′⟩

[S1, |1⟩⟨1|q|ψ⟩] → |ψ′⟩
(M1)

[meas q (0 → S0, 1 → S1), |ψ⟩] → |ψ′⟩

A transition occurs with probability ∥|ψ′⟩∥2
∥|ψ⟩∥2 .

9 / 21



Operational semantics

Defining an operational semantics

The goal is to define the evolution of |ψ⟩ induced by a program
statement S :

[S , |ψ⟩] → |ψ′⟩

[new qbit q, |ψ⟩] → |0⟩q ⊗ |ψ⟩ [q∗=U, |ψ⟩] → Uq|ψ⟩

[S0, |0⟩⟨0|q|ψ⟩] → |ψ′⟩
(M0)

[meas q (0 → S0, 1 → S1), |ψ⟩] → |ψ′⟩

[S1, |1⟩⟨1|q|ψ⟩] → |ψ′⟩
(M1)

[meas q (0 → S0, 1 → S1), |ψ⟩] → |ψ′⟩

A transition occurs with probability ∥|ψ′⟩∥2
∥|ψ⟩∥2 .

9 / 21



Operational semantics

Defining an operational semantics

The goal is to define the evolution of |ψ⟩ induced by a program
statement S :

[S , |ψ⟩] → |ψ′⟩

[new qbit q, |ψ⟩] → |0⟩q ⊗ |ψ⟩ [q∗=U, |ψ⟩] → Uq|ψ⟩

[S0, |0⟩⟨0|q|ψ⟩] → |ψ′⟩
(M0)

[meas q (0 → S0, 1 → S1), |ψ⟩] → |ψ′⟩

[S1, |1⟩⟨1|q|ψ⟩] → |ψ′⟩
(M1)

[meas q (0 → S0, 1 → S1), |ψ⟩] → |ψ′⟩

A transition occurs with probability ∥|ψ′⟩∥2
∥|ψ⟩∥2 .

9 / 21



Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 → S0, 1 → S1).

10 / 21



Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 → S0, 1 → S1).

If the input is |0⟩q ⊗ |ψ⟩ :

10 / 21



Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 → S0, 1 → S1).

If the input is |0⟩q ⊗ |ψ⟩ :

S0

S1

10 / 21



Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 → S0, 1 → S1).

If the input is |0⟩q ⊗ |ψ⟩ :

S0

S1

|ψ⟩

10 / 21



Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 → S0, 1 → S1).

If the input is |0⟩q ⊗ |ψ⟩ :

S0

S1

|ψ⟩

empty
input

10 / 21



Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 → S0, 1 → S1).

If the input is |0⟩q ⊗ |ψ⟩ :

S0

S1

|ψ⟩

empty
input

If the input is |1⟩q ⊗ |ψ⟩ :

10 / 21



Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 → S0, 1 → S1).

If the input is |0⟩q ⊗ |ψ⟩ :

S0

S1

|ψ⟩

empty
input

If the input is |1⟩q ⊗ |ψ⟩ :

S0

S1

10 / 21



Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 → S0, 1 → S1).

If the input is |0⟩q ⊗ |ψ⟩ :

S0

S1

|ψ⟩

empty
input

If the input is |1⟩q ⊗ |ψ⟩ :

S0

S1|ψ⟩

10 / 21



Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 → S0, 1 → S1).

If the input is |0⟩q ⊗ |ψ⟩ :

S0

S1

|ψ⟩

empty
input

If the input is |1⟩q ⊗ |ψ⟩ :

S0

S1

empty
input

|ψ⟩

10 / 21



Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 → S0, 1 → S1).

If the input is |0⟩q ⊗ |ψ⟩ :

S0

S1

|ψ⟩

empty
input

If the input is |1⟩q ⊗ |ψ⟩ :

S0

S1

empty
input

|ψ⟩

We define the action of S on the regular input |ψ⟩ and on the empty
input.

10 / 21



Operational semantics

Semantics of qcase?

Consider the statement qcase q (0 → S0, 1 → S1).

If the input is |0⟩q ⊗ |ψ⟩ :

S0

S1

|ψ⟩

empty
input

If the input is |1⟩q ⊗ |ψ⟩ :

S0

S1

empty
input

|ψ⟩

We define the action of S on the regular input |ψ⟩ and on the empty
input.

Therefore, we define default transitions.

10 / 21



Operational semantics

Operational semantics

Transition system

Transitions have the form
[S , |ψ⟩] ν→ |ψ′⟩

ν ∈ {0, 1} answers the question, “Is this the default transition?”

[new qbit q, |ψ⟩] 1→ |0⟩q ⊗ |ψ⟩ [q∗=U, |ψ⟩] 1→ Uq|ψ⟩

[S0, |0⟩⟨0|q|ψ⟩]
ν→ |ψ′⟩

(M0)
[meas q (0 → S0, 1 → S1), |ψ⟩]

ν→ |ψ′⟩
[S1, |1⟩⟨1|q|ψ⟩]

ν→ |ψ′⟩
(M1)

[meas q (0 → S0, 1 → S1), |ψ⟩]
0→ |ψ′⟩

 (M0) is the default

[S0, ⟨0|q|ψ⟩]
ν0→ |ψ0⟩ [S1, ⟨1|q|ψ⟩]

ν1→ |ψ1⟩

[qcase q (0 → S0, 1 → S1), |ψ⟩]
ν0ν1−→ ν1|0⟩q ⊗ |ψ0⟩+ ν0|1⟩q ⊗ |ψ1⟩

11 / 21



Operational semantics

Operational semantics

Transition system

Transitions have the form
[S , |ψ⟩] ν→ |ψ′⟩

ν ∈ {0, 1} answers the question, “Is this the default transition?”

[new qbit q, |ψ⟩] 1→ |0⟩q ⊗ |ψ⟩ [q∗=U, |ψ⟩] 1→ Uq|ψ⟩

[S0, |0⟩⟨0|q|ψ⟩]
ν→ |ψ′⟩

(M0)
[meas q (0 → S0, 1 → S1), |ψ⟩]

ν→ |ψ′⟩
[S1, |1⟩⟨1|q|ψ⟩]

ν→ |ψ′⟩
(M1)

[meas q (0 → S0, 1 → S1), |ψ⟩]
0→ |ψ′⟩

 (M0) is the default

[S0, ⟨0|q|ψ⟩]
ν0→ |ψ0⟩ [S1, ⟨1|q|ψ⟩]

ν1→ |ψ1⟩

[qcase q (0 → S0, 1 → S1), |ψ⟩]
ν0ν1−→ ν1|0⟩q ⊗ |ψ0⟩+ ν0|1⟩q ⊗ |ψ1⟩

11 / 21



Operational semantics

Operational semantics

Transition system

Transitions have the form
[S , |ψ⟩] ν→ |ψ′⟩

ν ∈ {0, 1} answers the question, “Is this the default transition?”

[new qbit q, |ψ⟩] 1→ |0⟩q ⊗ |ψ⟩ [q∗=U, |ψ⟩] 1→ Uq|ψ⟩

[S0, |0⟩⟨0|q|ψ⟩]
ν→ |ψ′⟩

(M0)
[meas q (0 → S0, 1 → S1), |ψ⟩]

ν→ |ψ′⟩
[S1, |1⟩⟨1|q|ψ⟩]

ν→ |ψ′⟩
(M1)

[meas q (0 → S0, 1 → S1), |ψ⟩]
0→ |ψ′⟩

 (M0) is the default

[S0, ⟨0|q|ψ⟩]
ν0→ |ψ0⟩ [S1, ⟨1|q|ψ⟩]

ν1→ |ψ1⟩

[qcase q (0 → S0, 1 → S1), |ψ⟩]
ν0ν1−→ ν1|0⟩q ⊗ |ψ0⟩+ ν0|1⟩q ⊗ |ψ1⟩

11 / 21



Operational semantics

Operational semantics

Transition system

Transitions have the form
[S , |ψ⟩] ν→ |ψ′⟩

ν ∈ {0, 1} answers the question, “Is this the default transition?”

[new qbit q, |ψ⟩] 1→ |0⟩q ⊗ |ψ⟩ [q∗=U, |ψ⟩] 1→ Uq|ψ⟩

[S0, |0⟩⟨0|q|ψ⟩]
ν→ |ψ′⟩

(M0)
[meas q (0 → S0, 1 → S1), |ψ⟩]

ν→ |ψ′⟩
[S1, |1⟩⟨1|q|ψ⟩]

ν→ |ψ′⟩
(M1)

[meas q (0 → S0, 1 → S1), |ψ⟩]
0→ |ψ′⟩

 (M0) is the default

[S0, ⟨0|q|ψ⟩]
ν0→ |ψ0⟩ [S1, ⟨1|q|ψ⟩]

ν1→ |ψ1⟩

[qcase q (0 → S0, 1 → S1), |ψ⟩]
ν0ν1−→ ν1|0⟩q ⊗ |ψ0⟩+ ν0|1⟩q ⊗ |ψ1⟩ 11 / 21



Denotational semantics

Denotational semantics

12 / 21



Denotational semantics

Denotational semantics

The goal is to assign to each program a mathematical operation
that describes its behavior.

First idea: Interpret programs as completely positive trace
non-increasing maps:

JPK = C

13 / 21



Denotational semantics

Semantics of qcase?

On unitaries:

qcase(U,V ) =

[
U 0
0 V

]
On unitary operations U = U(·)U† and V = V (·)V †:

QCASE(U ,V) =

[
ρ1 ρ2
ρ3 ρ4

]
7→

[
Uρ1U

† Uρ2V
†

V ρ3U
† V ρ4V

†

]
Therefore:

QCASE(C,D) =

[
ρ1 ρ2
ρ3 ρ4

]
7→

[
C(ρ1) ∗
∗ D(ρ4)

]
?

This is not possible: QCASE(C,D) is ill-defined.

14 / 21



Denotational semantics

Semantics of qcase?

On unitaries:

qcase(U,V ) =

[
U 0
0 V

]

On unitary operations U = U(·)U† and V = V (·)V †:

QCASE(U ,V) =

[
ρ1 ρ2
ρ3 ρ4

]
7→

[
Uρ1U

† Uρ2V
†

V ρ3U
† V ρ4V

†

]
Therefore:

QCASE(C,D) =

[
ρ1 ρ2
ρ3 ρ4

]
7→

[
C(ρ1) ∗
∗ D(ρ4)

]
?

This is not possible: QCASE(C,D) is ill-defined.

14 / 21



Denotational semantics

Semantics of qcase?

On unitaries:

qcase(U,V ) =

[
U 0
0 V

]
On unitary operations U = U(·)U† and V = V (·)V †:

QCASE(U ,V) =

[
ρ1 ρ2
ρ3 ρ4

]
7→

[
Uρ1U

† Uρ2V
†

V ρ3U
† V ρ4V

†

]
Therefore:

QCASE(C,D) =

[
ρ1 ρ2
ρ3 ρ4

]
7→

[
C(ρ1) ∗
∗ D(ρ4)

]
?

This is not possible: QCASE(C,D) is ill-defined.

14 / 21



Denotational semantics

Semantics of qcase?

On unitaries:

qcase(U,V ) =

[
U 0
0 V

]
On unitary operations U = U(·)U† and V = V (·)V †:

QCASE(U ,V) =

[
ρ1 ρ2
ρ3 ρ4

]
7→

[
Uρ1U

† Uρ2V
†

V ρ3U
† V ρ4V

†

]

Therefore:

QCASE(C,D) =

[
ρ1 ρ2
ρ3 ρ4

]
7→

[
C(ρ1) ∗
∗ D(ρ4)

]
?

This is not possible: QCASE(C,D) is ill-defined.

14 / 21



Denotational semantics

Semantics of qcase?

On unitaries:

qcase(U,V ) =

[
U 0
0 V

]
On unitary operations U = U(·)U† and V = V (·)V †:

QCASE(U ,V) =

[
ρ1 ρ2
ρ3 ρ4

]
7→

[
Uρ1U

† Uρ2V
†

V ρ3U
† V ρ4V

†

]
Therefore:

QCASE(C,D) =

[
ρ1 ρ2
ρ3 ρ4

]
7→

[
C(ρ1) ∗
∗ D(ρ4)

]
?

This is not possible: QCASE(C,D) is ill-defined.

14 / 21



Denotational semantics

Semantics of qcase?

On unitaries:

qcase(U,V ) =

[
U 0
0 V

]
On unitary operations U = U(·)U† and V = V (·)V †:

QCASE(U ,V) =

[
ρ1 ρ2
ρ3 ρ4

]
7→

[
Uρ1U

† Uρ2V
†

V ρ3U
† V ρ4V

†

]
Therefore:

QCASE(C,D) =

[
ρ1 ρ2
ρ3 ρ4

]
7→

[
C(ρ1) ∗
∗ D(ρ4)

]
?

This is not possible: QCASE(C,D) is ill-defined.

14 / 21



Denotational semantics

Solution: We interpret a statement S as a vacuum-extended operation.
The domain is extended by a vector |vac⟩ in a one-dimensional Hilbert
space Vac.

Vacuum-extended operations

A vacuum extension of a quantum operation C is a quantum operation C̃
such that:

On regular states: C̃(ρ) = C(ρ).
On the vacuum state: C̃(|vac⟩⟨vac|) = |vac⟩⟨vac|.

C̃ is characterized by a pair (C,F ), where F is called a transformation
matrix.

QCASE((C,F ), (D,G )) is well defined.

QCASE((C,F ), (D,G )) =

([
ρ1 ρ2
ρ3 ρ4

]
7→

[
C(ρ1) Fρ2G

†

Gρ3F
† D(ρ4)

]
,

[
F 0
0 G

])

15 / 21



Denotational semantics

Solution: We interpret a statement S as a vacuum-extended operation.
The domain is extended by a vector |vac⟩ in a one-dimensional Hilbert
space Vac.

Vacuum-extended operations

A vacuum extension of a quantum operation C is a quantum operation C̃
such that:

On regular states: C̃(ρ) = C(ρ).
On the vacuum state: C̃(|vac⟩⟨vac|) = |vac⟩⟨vac|.

Hlér Kristjánsson et al. “Resource theories of communication”. In: New Journal of Physics 22.7
(2020), p. 073014

C̃ is characterized by a pair (C,F ), where F is called a transformation matrix.
QCASE((C,F ), (D,G)) is well defined.

QCASE((C,F ), (D,G)) =

([
ρ1 ρ2
ρ3 ρ4

]
7→

[
C(ρ1) Fρ2G†

Gρ3F † D(ρ4)

]
,

[
F 0
0 G

])

15 / 21



Denotational semantics

Solution: We interpret a statement S as a vacuum-extended operation.
The domain is extended by a vector |vac⟩ in a one-dimensional Hilbert
space Vac.

Vacuum-extended operations

A vacuum extension of a quantum operation C is a quantum operation C̃
such that:

On regular states: C̃(ρ) = C(ρ).
On the vacuum state: C̃(|vac⟩⟨vac|) = |vac⟩⟨vac|.

C̃ is characterized by a pair (C,F ), where F is called a transformation
matrix.

QCASE((C,F ), (D,G )) is well defined.

QCASE((C,F ), (D,G )) =

([
ρ1 ρ2
ρ3 ρ4

]
7→

[
C(ρ1) Fρ2G

†

Gρ3F
† D(ρ4)

]
,

[
F 0
0 G

])

15 / 21



Denotational semantics

Solution: We interpret a statement S as a vacuum-extended operation.
The domain is extended by a vector |vac⟩ in a one-dimensional Hilbert
space Vac.

Vacuum-extended operations

A vacuum extension of a quantum operation C is a quantum operation C̃
such that:

On regular states: C̃(ρ) = C(ρ).
On the vacuum state: C̃(|vac⟩⟨vac|) = |vac⟩⟨vac|.

C̃ is characterized by a pair (C,F ), where F is called a transformation
matrix.

QCASE((C,F ), (D,G )) is well defined.

QCASE((C,F ), (D,G )) =

([
ρ1 ρ2
ρ3 ρ4

]
7→

[
C(ρ1) Fρ2G

†

Gρ3F
† D(ρ4)

]
,

[
F 0
0 G

])
15 / 21



Denotational semantics

Denotational semantics

Interpretation of programs

A statement S is interpreted as a vacuum-extended operation
JSK = (C,F ).

Some statement interpretations:

Jnew qbit qK :=
(
|0⟩⟨0|q ⊗−, |0⟩q ⊗ IΓ

)
Jq∗=UK :=

(
Uq(·)U†

q,Uq

)
Jqcase q (0 → P, 1 → Q)K := QCASEq[JPK, JQK]

Jwhile q do SK := lfp(F S
q )

where F S
q (C,F ) := measq

[
(I, I ), (C,F ) ◦ JSK

]
.

16 / 21



Denotational semantics

Denotational semantics

Interpretation of programs

A statement S is interpreted as a vacuum-extended operation
JSK = (C,F ).

Some statement interpretations:

Jnew qbit qK :=
(
|0⟩⟨0|q ⊗−, |0⟩q ⊗ IΓ

)
Jq∗=UK :=

(
Uq(·)U†

q,Uq

)
Jqcase q (0 → P, 1 → Q)K := QCASEq[JPK, JQK]

Jwhile q do SK := lfp(F S
q )

where F S
q (C,F ) := measq

[
(I, I ), (C,F ) ◦ JSK

]
.

16 / 21



Results

Results

17 / 21



Results

Universality and adequacy

Universality

For all vacuum extension (C,F ), there exists a statement S whose
interpretation satisfies JSK = (C,F ).

Adequacy

The operational and denotational semantics describe the same behavior of
programs.

18 / 21



Results

Universality and adequacy

Universality

For all vacuum extension (C,F ), there exists a statement S whose
interpretation satisfies JSK = (C,F ).

Adequacy

The operational and denotational semantics describe the same behavior of
programs.

18 / 21



Results

Full abstraction

S and S ′ are observationally equivalent (S ≈ S ′) if their behavior is
indistinguishable in any context.

Full abstraction

S ≈ S ′ iff JPK = JQK

Exemples :

new qbit q; discard q ≈ skip

qcase q (0 → S0, 1 → S1);qcase q (0 → S ′
0, 1 → S ′

1)
≈

qcase q (0 → S0; S
′
0, 1 → S1;S

′
1)

qcase q (0 → S , 1 → S) ̸≈ S in general

19 / 21



Results

Full abstraction

S and S ′ are observationally equivalent (S ≈ S ′) if their behavior is
indistinguishable in any context.

Full abstraction

S ≈ S ′ iff JPK = JQK

Exemples :

new qbit q; discard q ≈ skip

qcase q (0 → S0, 1 → S1);qcase q (0 → S ′
0, 1 → S ′

1)
≈

qcase q (0 → S0; S
′
0, 1 → S1;S

′
1)

qcase q (0 → S , 1 → S) ̸≈ S in general

19 / 21



Results

Full abstraction

S and S ′ are observationally equivalent (S ≈ S ′) if their behavior is
indistinguishable in any context.

Full abstraction

S ≈ S ′ iff JPK = JQK

Exemples :

new qbit q; discard q ≈ skip

qcase q (0 → S0, 1 → S1);qcase q (0 → S ′
0, 1 → S ′

1)

≈
qcase q (0 → S0; S

′
0, 1 → S1;S

′
1)

qcase q (0 → S , 1 → S) ̸≈ S in general

19 / 21



Results

Full abstraction

S and S ′ are observationally equivalent (S ≈ S ′) if their behavior is
indistinguishable in any context.

Full abstraction

S ≈ S ′ iff JPK = JQK

Exemples :

new qbit q; discard q ≈ skip

qcase q (0 → S0, 1 → S1);qcase q (0 → S ′
0, 1 → S ′

1)
≈

qcase q (0 → S0; S
′
0, 1 → S1;S

′
1)

qcase q (0 → S , 1 → S) ̸≈ S in general

19 / 21



Results

Full abstraction

S and S ′ are observationally equivalent (S ≈ S ′) if their behavior is
indistinguishable in any context.

Full abstraction

S ≈ S ′ iff JPK = JQK

Exemples :

new qbit q; discard q ≈ skip

qcase q (0 → S0, 1 → S1);qcase q (0 → S ′
0, 1 → S ′

1)
≈

qcase q (0 → S0; S
′
0, 1 → S1;S

′
1)

qcase q (0 → S , 1 → S) ̸≈ S in general

19 / 21



Conlusion

Conlusion

20 / 21



Conlusion

Conclusion

We introduced a programming language combining qcase, measurement
and recursion.

The semantics of qcase requires some extra information:

Default transitions in the operational semantics,

Transformation matrices in the denotational semantics.

Results:

1 Universality,

2 Adequacy between the two semantics,

3 Full abstraction.

Questions?

21 / 21



Conlusion

Conclusion

We introduced a programming language combining qcase, measurement
and recursion.

The semantics of qcase requires some extra information:

Default transitions in the operational semantics,

Transformation matrices in the denotational semantics.

Results:

1 Universality,

2 Adequacy between the two semantics,

3 Full abstraction.

Questions?

21 / 21



Conlusion

Conclusion

We introduced a programming language combining qcase, measurement
and recursion.

The semantics of qcase requires some extra information:

Default transitions in the operational semantics,

Transformation matrices in the denotational semantics.

Results:

1 Universality,

2 Adequacy between the two semantics,

3 Full abstraction.

Questions?

21 / 21



Conlusion

Conclusion

We introduced a programming language combining qcase, measurement
and recursion.

The semantics of qcase requires some extra information:

Default transitions in the operational semantics,

Transformation matrices in the denotational semantics.

Results:

1 Universality,

2 Adequacy between the two semantics,

3 Full abstraction.

Questions?

21 / 21


	A programming language for quantum control
	Operational semantics
	Denotational semantics
	Results
	Conlusion

