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Classical and quantum control

“Quantum data, classical control”

The execution flow is based on classical information (for instance
measurement outcomes).

“Quantum data, quantum control”

The execution flow is based on quantum information. We allow for
the superposition of processes during the execution of a program.

Elements of the control structure:

if statements

while statements

Iteration

2 / 21



Classical and quantum control

“Quantum data, classical control”

The execution flow is based on classical information (for instance
measurement outcomes).

“Quantum data, quantum control”

The execution flow is based on quantum information. We allow for
the superposition of processes during the execution of a program.

Elements of the control structure:

if statements

while statements

Iteration

2 / 21



Classical and quantum control

“Quantum data, classical control”

The execution flow is based on classical information (for instance
measurement outcomes).

“Quantum data, quantum control”

The execution flow is based on quantum information. We allow for
the superposition of processes during the execution of a program.

Elements of the control structure:

if statements

while statements

Iteration

2 / 21



An example of quantum control: qcase

The operation qcase acts on a pair of qubits (“control” and “target”).
For U and V unitary:

If the control qubit is in state |0⟩, apply U to the target qubit.

If the control qubit is in state |1⟩, apply V to the target qubit.

Otherwise, apply U and V in a coherent superposition.

qcase(U,V ) :=

 U 0

0 V


The goal is to develop a programming language that supports
coherent control.
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Main difficulties

Combining qcase with...

1 Measurement

2 Recursion
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Main difficulties

Combining qcase with...
1 Measurement

Defining qcase beyond the unitary case: qcase(U,V ) =

 U 0

0 V


2 Recursion

Incompatibility of qcase with the Löwner ordering.

Costin Bădescu and Prakash Panangaden. “Quantum alternation: Prospects and
problems”. In: 12th International Workshop on Quantum Physics and Logic (2015)
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A programming language for quantum control

A programming language for quantum control
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A programming language for quantum control

Syntax

The syntax is inspired by the programming language QPL.

Statements

S ,S0,S1 ::= skip | new qbit q | discard q | q∗=U | S0;S1
| meas q (0 → S0, 1 → S1) | while q do S

| qcase q (0 → S0, 1 → S1)

where U is a single-qubit unitary map.

Peter Selinger. “Towards a quantum programming language”. In: Mathematical Structures in
Computer Science 14.4 (2004), pp. 527–586

meas q (0 → S0, 1 → S1) the qubit q, and executes S0 or S1 depending on the outcome.

while q do S is a loop where q is measured at every iteration.

qcase q (0 → S0, 1 → S1) implements quantum control: S0 and S1 are executed in
superposition depending on the state of q.

6 / 21



A programming language for quantum control

Syntax

The syntax is inspired by the programming language QPL.

Statements

S ,S0,S1 ::= skip | new qbit q | discard q | q∗=U | S0;S1
| meas q (0 → S0, 1 → S1) | while q do S

| qcase q (0 → S0, 1 → S1)

where U is a single-qubit unitary map.

meas q (0 → S0, 1 → S1) the qubit q, and executes S0 or S1
depending on the outcome.

while q do S is a loop where q is measured at every iteration.

qcase q (0 → S0, 1 → S1) implements quantum control: S0 and S1
are executed in superposition depending on the state of q.

6 / 21



A programming language for quantum control

Syntax

The syntax is inspired by the programming language QPL.

Statements

S ,S0,S1 ::= skip | new qbit q | discard q | q∗=U | S0;S1
| meas q (0 → S0, 1 → S1) | while q do S

| qcase q (0 → S0, 1 → S1)

where U is a single-qubit unitary map.

meas q (0 → S0, 1 → S1) the qubit q, and executes S0 or S1
depending on the outcome.

while q do S is a loop where q is measured at every iteration.

qcase q (0 → S0, 1 → S1) implements quantum control: S0 and S1
are executed in superposition depending on the state of q.

6 / 21



A programming language for quantum control

Syntax

The syntax is inspired by the programming language QPL.

Statements

S ,S0,S1 ::= skip | new qbit q | discard q | q∗=U | S0;S1
| meas q (0 → S0, 1 → S1) | while q do S

| qcase q (0 → S0, 1 → S1)

where U is a single-qubit unitary map.

meas q (0 → S0, 1 → S1) the qubit q, and executes S0 or S1
depending on the outcome.

while q do S is a loop where q is measured at every iteration.

qcase q (0 → S0, 1 → S1) implements quantum control: S0 and S1
are executed in superposition depending on the state of q.

6 / 21



A programming language for quantum control

Example: CNOT

t

c

SCNOT := qcase c (0 → skip, 1 → t∗=X )

where X :=

[
0 1
1 0

]
.
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Operational semantics

Operational semantics
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Operational semantics

Defining an operational semantics

The goal is to define the evolution of |ψ⟩ induced by a program
statement S :

[S , |ψ⟩] → |ψ′⟩

[new qbit q, |ψ⟩] → |0⟩q ⊗ |ψ⟩ [q∗=U, |ψ⟩] → Uq|ψ⟩

[S0, |0⟩⟨0|q|ψ⟩] → |ψ′⟩
(M0)

[meas q (0 → S0, 1 → S1), |ψ⟩] → |ψ′⟩

[S1, |1⟩⟨1|q|ψ⟩] → |ψ′⟩
(M1)

[meas q (0 → S0, 1 → S1), |ψ⟩] → |ψ′⟩

A transition occurs with probability ∥|ψ′⟩∥2
∥|ψ⟩∥2 .
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Operational semantics

Operational semantics

Transition system

Transitions have the form
[S , |ψ⟩] ν→ |ψ′⟩

ν ∈ {0, 1} answers the question, “Is this the default transition?”

[new qbit q, |ψ⟩] 1→ |0⟩q ⊗ |ψ⟩ [q∗=U, |ψ⟩] 1→ Uq|ψ⟩

[S0, |0⟩⟨0|q|ψ⟩]
ν→ |ψ′⟩

(M0)
[meas q (0 → S0, 1 → S1), |ψ⟩]

ν→ |ψ′⟩
[S1, |1⟩⟨1|q|ψ⟩]

ν→ |ψ′⟩
(M1)

[meas q (0 → S0, 1 → S1), |ψ⟩]
0→ |ψ′⟩

 (M0) is the default

[S0, ⟨0|q|ψ⟩]
ν0→ |ψ0⟩ [S1, ⟨1|q|ψ⟩]

ν1→ |ψ1⟩

[qcase q (0 → S0, 1 → S1), |ψ⟩]
ν0ν1−→ ν1|0⟩q ⊗ |ψ0⟩+ ν0|1⟩q ⊗ |ψ1⟩
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Denotational semantics

Denotational semantics

The goal is to assign to each program a mathematical operation
that describes its behavior.

First idea: Interpret programs as completely positive trace
non-increasing maps:

JPK = C
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Denotational semantics

Semantics of qcase?

On unitaries:

qcase(U,V ) =

[
U 0
0 V

]
On unitary operations U = U(·)U† and V = V (·)V †:

QCASE(U ,V) =

[
ρ1 ρ2
ρ3 ρ4

]
7→

[
Uρ1U

† Uρ2V
†

V ρ3U
† V ρ4V

†

]
Therefore:

QCASE(C,D) =

[
ρ1 ρ2
ρ3 ρ4

]
7→

[
C(ρ1) ∗
∗ D(ρ4)

]
?

This is not possible: QCASE(C,D) is ill-defined.
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Denotational semantics

Solution: We interpret a statement S as a vacuum-extended operation.
The domain is extended by a vector |vac⟩ in a one-dimensional Hilbert
space Vac.

Vacuum-extended operations

A vacuum extension of a quantum operation C is a quantum operation C̃
such that:

On regular states: C̃(ρ) = C(ρ).
On the vacuum state: C̃(|vac⟩⟨vac|) = |vac⟩⟨vac|.

C̃ is characterized by a pair (C,F ), where F is called a transformation
matrix.

QCASE((C,F ), (D,G )) is well defined.

QCASE((C,F ), (D,G )) =

([
ρ1 ρ2
ρ3 ρ4

]
7→

[
C(ρ1) Fρ2G

†

Gρ3F
† D(ρ4)

]
,

[
F 0
0 G

])
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QCASE((C,F ), (D,G )) =

([
ρ1 ρ2
ρ3 ρ4

]
7→

[
C(ρ1) Fρ2G

†

Gρ3F
† D(ρ4)

]
,

[
F 0
0 G

])
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Denotational semantics

Interpretation of programs

A statement S is interpreted as a vacuum-extended operation
JSK = (C,F ).

Some statement interpretations:

Jnew qbit qK :=
(
|0⟩⟨0|q ⊗−, |0⟩q ⊗ IΓ

)
Jq∗=UK :=

(
Uq(·)U†

q,Uq

)
Jqcase q (0 → P, 1 → Q)K := QCASEq[JPK, JQK]

Jwhile q do SK := lfp(F S
q )

where F S
q (C,F ) := measq

[
(I, I ), (C,F ) ◦ JSK

]
.
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Results

Universality and adequacy

Universality

For all vacuum extension (C,F ), there exists a statement S whose
interpretation satisfies JSK = (C,F ).

Adequacy

The operational and denotational semantics describe the same behavior of
programs.
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Full abstraction

S and S ′ are observationally equivalent (S ≈ S ′) if their behavior is
indistinguishable in any context.

Full abstraction

S ≈ S ′ iff JPK = JQK

Exemples :

new qbit q; discard q ≈ skip

qcase q (0 → S0, 1 → S1);qcase q (0 → S ′
0, 1 → S ′

1)
≈

qcase q (0 → S0; S
′
0, 1 → S1;S

′
1)

qcase q (0 → S , 1 → S) ̸≈ S in general
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Conlusion

Conclusion

We introduced a programming language combining qcase, measurement
and recursion.

The semantics of qcase requires some extra information:

Default transitions in the operational semantics,

Transformation matrices in the denotational semantics.

Results:

1 Universality,

2 Adequacy between the two semantics,

3 Full abstraction.

Questions?
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