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Linear codes

Consider C an [n, k] linear code on a finite field Zq i.e Zq-linear subspace of Zn
q of length n and

dimension k . q is prime

A parity check matrix H of a code C is such that ker(H) = C.

The decoding problem

Input y = c + e ∈ Zn
q with c ∈ C and e ∈ Zn

q an error chosen with distribution p.

Output c or e

The Short Codeword Problem (SCP)

Input C linear code [n, k], a metric | · | on Zn
q and a bound ω

Output c a non-zero codeword verifying |c | ⩽ ω
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Why are we interested in these problems?

Uses in cryptography:

• Decoding Problem:

• Encryption : Bike, McEliece, HQC, Kyber

• Signature : SDitH

• Short Codeword Problem:

• Signature :Wave , Dillithium

Idea : Study the difficulty to solve these problems with the quantum computer.
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General algorithm (Regev)

Quantum algorithm : quantum reduction SCP (multiple solutions) < DP (one solution)

Solve SCP using :

• a classical algorithm solving the decoding problem

• the quantum fourier transform
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General algorithm (Regev)

Classical Fourier transform : f̂ (x) =
1√
qn

∑
y∈Zn

q

e
2iπ⟨x,y⟩

q f (y)

Quantum Fourier transform : QFT|x⟩ = 1√
qn

∑
y∈Zn

q

e
2iπ⟨x,y⟩

q |y⟩

We denote the dual code of C as :C⊥ = {x ∈ Zn
q | x .cT = 0 for all c ∈ C}

Lemma

QFT(
∑
c∈C

∑
e

F (e)|c + e⟩) =
∑

c⊥∈C⊥

F̂ (c⊥)|c⊥⟩
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General algorithm (Regev)

1. Construct
1√
qk

∑
c∈C

|c⟩ ⊗
∑
e
F (e)|e⟩

2. Intricate
∑
c∈C

∑
e
F (e)|c⟩ ⊗ |c + e⟩

3. Decode Quantumly solve the decoding problem : from c + e, find c
1

Z

∑
c∈C

∑
e
F (e)|0⟩|c + e⟩.

4. Quantum Fourier Transform
1

Z

∑
c⊥∈C⊥

F̂ (c⊥)|0⟩|c⊥⟩

5. Measure
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Regev’s algorithm modified (Chen, Liu, Zhandry)

1. Construct
1√
qk

∑
c∈C

|c⟩ ⊗
∑
e
F (e)|e⟩

2. Intricate
∑
c∈C

∑
e
F (e)|c⟩ ⊗ |c + e⟩ =

∑
c∈C

|c⟩|ψc⟩ with |ψc⟩ =
∑
e∈Zn

q

F (e)|c + e⟩

3. Decode Quantumly solve the decoding problem : from |ψc⟩, find c
1

Z

∑
c∈C

|0⟩|ψc⟩.

4. Quantum Fourier Transform
1

Z

∑
c⊥∈C⊥

F̂ (c⊥)|0⟩|c⊥⟩

5. Measure
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The quantum decoding problem

The quantum decoding problem (S-LWE)

Input |ψc⟩ =
∑
e∈Zn

q

F (e)|c + e⟩ with e ∈ Zn
q an error and F (e) =

√
p(e)

Output c

The quantum decoding problem is not harder than the classical decoding problem

When we measure |ψc⟩, we get c + e noisy codeword with probability |F (e)|2
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State of the art

[Chen, Liu, Zhandry 22]

Introduce S-LWE (quantum decoding

problem): Quantum algorithms in

polynomial time to solve S-LWE and a

specific instance of SIS∞ (SCP with infinite

norm)

• particular zone of parameters : no classical

algorithm doing this in polynomial time

• reduction from the quantum algorithm

solving QDP to the quantum algorithm

solving SCP

• not in a constant rate : tends to 0

The quantum decoding problem [Chailloux,

Tillich 23]

• natural zone of parameters: constant rate

• Bernoulli distribution

• solve the quantum decoding problem in

polynomial time

• quantum algorithm in polynomial time to

solve SCP equivalent to classical Prange

algorithm

• go beyond with a non polynomial time

algorithm to find minimal weight codeword

in the dual code (PGM)
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Latest results

[Chen, Liu, Zhandry 22]

Introduce S-LWE (quantum decoding

problem): Quantum algorithms in

polynomial time to solve S-LWE and a

specific instance of SIS∞ (SCP with infinite

norm)

• particular zone of parameters : no classical

algorithm doing this in polynomial time

• reduction from the quantum algorithm

solving QDP to the quantum algorithm

solving SCP

• not in a constant rate : tends to 0

No exponential quantum speedup for SIS∞

anymore [Kothary, O’Donnell, Wu 25]

• Classical algorithm that solves SIS∞ in

polynomial time

• No exponential quantum speedup anymore
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Why is it interesting?

0

Hard

pcritique(R)

Intractable
q−1
q

p
Decoding

Problem

0

Easy(
(q−1)R

q

)⊥
Hard

(pcritique(1− R))⊥
Intractable

q−1
q

p

Quantum

Decoding

Problem

0

Easy

pcritique(1− R)

Hard (
(q−1)R

q

)Intractable
q−1
q

p
Short

Codeword

Problem

Pr(ei = 0) = 1− p

Pr(ei ̸= 0) = p
q−1

p⊥ =

√
(1−p)(q−1)−√

p

q
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The Pretty Good Measurement

Problem : From an ensemble {|ψi ⟩}i∈[n] of quantum states , we want to recover i from |ψi ⟩
when i is chosen at random.

Definition

The PGM associated to the ensemble {|ψi ⟩}i∈[n] of quantum states is the POVM

{Mi}i∈[n] with

Mi = ρ−
1
2 |ψi ⟩⟨ψi |ρ−

1
2 given ρ =

∑
i∈[n]

|ψi ⟩⟨ψi |

Proposition

The PGM is optimal
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Achievability result for random linear codes

We analyse the PGM in a general case of noise distribution f = g⊗n

Let R =
k

n
be the rate of the code C and Hq(|ĝ |2) = −

∑
e∈Zq

|ĝ(e)|2 log(|ĝ(e)|2) be the entropy.

Theorem : Achievability result for random linear codes [ Blanvillain, Chailloux, Tillich ]

If there exists δ > 0 such that R < Hq(|ĝ |2) + δ, then

PPGM = 1− o(1)
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∑
e∈Zq
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Let g(e) the error function for the Bernoulli distribution such that

g(0) =
√
1− p and for e ∈ Zq\{0}, g(e) =

√
p

p − 1
.

If p < (δmin(1− R))⊥, then PPGM = 1− o(1)
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Non-achievability result in the general case

Theorem : Achievability result for random linear codes [ Blanvillain, Chailloux, Tillich ]

If there exists δ > 0 such that R < Hq(|ĝ |2)− δ, then

PPGM = 1− o(1)

Theorem : Non-achievability result in the general case [ Blanvillain, Chailloux, Tillich ]

If there exists δ > 0 such that R ⩾ Hq(|ĝ |2) + δ, then for any quantum algorithm and

any code with qRn codewords,

PPGM = o(1)
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The rank metric case

Rank metric

When n = a · b, a ≥ b

Arrange the entries of a vector x ∈ Zn
q in a matrix X = Mat(x) ∈ Za×b

q

|x |rk
△
=rank(X)

f a,bt (e) =



[
b − |e|rk
t − |e|rk

]
q√

qatZ
if |e|rk ⩽ t

0 else

with

[
b

t

]
q

=


t−1∏
i=0

qb − qi

qt − qi
if t ⩽ b

0 else

f̂t = fb−t . (1)
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The rank metric case

Application in rank metric : case of interest in code-based cryptography : alternative to the

usual Hamming metric

The distribution does not correspond to a product distribution

The probability distribution is a decreasing function of the rank weight. We get at the limit

where the PGM works elements in the dual code of minimum rank weight.
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The Quantum Decoding Problem : Takeaway

☞ Tight achievability results : it is possible from an information theoretic perspective to solve

the Quantum Decoding Problem for random linear codes when R < Hq(|ĝ |2)− δ for δ > 0

☞ The algorithm can be used in Regev’s reduction to solve the Short Codeword Problem to

find low weight dual codewords. In a general distribution |f |2, the algorithm permits to find the

most probable codeword according to the probability distribution |f̂ |2.
When the distribution is a decreasing function of the norm or the weight, we find minimal

codewords

Thank you for your attention !
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