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Introduction

Lattices, Shortest Vector Problem

A Lattice is ℒ︀ = {∑𝑑
𝑖=1 𝑠𝑖𝒃𝒊 : 𝑠𝑖 ∈ ℤ} where 𝒃𝟏, …, 𝒃𝒅 is a basis of ℝ𝑑.

Shortest Vector Problem (SVP)

Given a basis of ℒ︀, find a non zero shortest vector.
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Introduction

Motivation to solve SVP

Post-Quantum Cryptography

• NP-hard problem, believed to be quantum-resistant.

• Other problems like LWE, SIS, NTRU are derieved from SVP.

• Cryptosystems based on them: Kyber, Dilithium, Falcon.

→ The security on these cryptosystems directly relies on the complexity 

of solving SVP.
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Introduction

Sieving approach

Sieving Approach

Generate a list 𝐿 of vectors and combine them to reduce there length.

Let 𝒜︀ be an algorithm that, starting from a list 𝐿0 of unit vectors, 

constructs a list 𝐿1 of vectors of norm 𝛾 < 1.

1. 𝐿0 = 𝐿 with ‖𝑥‖ = 1, ∀𝑥 ∈ 𝐿0
2. 𝐿1 = 𝒜︀(𝐿0) with ‖𝑥‖ = 𝛾, ∀𝑥 ∈ 𝐿1

⋮
3. 𝐿𝑘 = 𝒜︀(𝐿𝑘−1) with ‖𝑥‖ = 𝛾𝑘, ∀𝑥 ∈ 𝐿𝑘

Given a list 𝐿 of vectors, preprocess 𝐿 such that one can efficiently 

find pairs of vectors close to each other.
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Locality Sensitive Filtering

Sieving Algorithm, Filters

Hypothesis

Let 𝑥𝑖 ∈ 𝐿,

𝑥𝑖 ⟵
$

𝕊𝑑
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Locality Sensitive Filtering

Sieving Algorithm, Filters

Let 𝑥, 𝑥′ ∈ 𝐿,

‖𝑥 − 𝑥′‖ ≤ 1 ⇔ 𝜃(𝑥, 𝑥′) ≤ 𝜋
3

Filters, buckets

Let 𝑓𝑗 ∈ 𝕊𝑑 be a filter. We define 

the 𝛼-hypercone,

ℋ︀𝛼,𝑓𝑗
= {𝑥 ∈ 𝕊𝑑 : 𝜃(𝑓, 𝑥) ≤ 𝛼}.

The bucket 𝐵𝛼(𝑓𝑗) is defined by

𝐵𝛼(𝑓𝑗) = ℋ︀𝛼,𝑓𝑗
∩ 𝐿.

Université de Rennes - IRISA 6 / 19



Locality Sensitive Filtering

Sieving Algorithm, Filters

1. Sample filters {𝑓𝑖}𝑖 and initialize 

the buckets.

2. Fill the buckets 𝐵𝛼(𝑓𝑗) with the 

lattice vectors.

3. Find the solution among each 

buckets.

4. Repeat steps 1, 2, and 3 until you 

find enough solutions.

Time Complexity

𝑁REP(𝑁INIT + 𝑁FindSol)
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Quantum Random Walk

Basis of Quantum Computing

Grover's Search

Let 𝐿 a list of size 𝑁  and a function 𝑓 : 𝐿 → {0, 1}, there exists a 

quantum algorithm which finds 𝑥 ∈ 𝐿 such that 𝑓(𝑥) = 1 using 

𝑂(
√

𝑁) evaluations of the function.

1√
𝑁

∑
𝑥∈𝐿

|𝑥⟩

Université de Rennes - IRISA 8 / 19



Quantum Random Walk

Quantum Random Walk

• Setup cost: 𝒮︀
• Checking cost: 𝒞︀
• Update cost: 𝒰︀

The classical random walk finds a marked element in time

𝑇 = 𝒮︀ + 1
𝜀
(𝒞︀ + 1

𝛿
𝒰︀)

where 𝜀 is the ratio of marked vertices and 𝛿 the spectral gap.
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Quantum Random Walk

• Setup cost: 𝒮︀
• Checking cost: 𝒞︀
• Update cost: 𝒰︀

The classical random walk finds a marked element in time p

𝑇 = 𝒮︀ + 1
𝜀
(𝒞︀ + 1

𝛿
𝒰︀)

where 𝜀 is the ratio of marked vertices and 𝛿 the spectral gap.

Université de Rennes - IRISA 9 / 19



Quantum Random Walk

Quantum Random Walk

• Setup cost: 𝒮︀
• Checking cost: 𝒞︀
• Update cost: 𝒰︀

The classical random walk finds a marked element in time

𝑇 = 𝒮︀ + 1
𝜀
(𝒞︀ + 1

𝛿
𝒰︀)

where 𝜀 is the ratio of marked vertices and 𝛿 the spectral gap.

Université de Rennes - IRISA 9 / 19



Quantum Random Walk

Quantum Random Walk

• Setup cost: 𝒮︀
• Checking cost: 𝒞︀
• Update cost: 𝒰︀

The quantum random walk find a marked element in time

𝑇 = 𝒮︀ + 1√
𝜀
(𝒞︀ + 1√

𝛿
𝒰︀)
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Quantum Random Walk

Johnson Graph

𝐵𝛼 = {𝑦1, …, 𝑦𝑛}, fix 𝑟 < 𝑛,

The graph 𝐽(𝑛, 𝑟) :

• Nodes are subsets of 𝑟 vectors 

among 𝐵𝛼 (with 𝑟 ≪ 𝑛), and 

data stuff

𝑣 = (𝐿𝑣, 𝐷(𝑣), 𝑏𝑣).

• Two nodes 𝑣, 𝑤 are connected if 

there exists 𝑦old and 𝑦new such 

that

𝐿𝑤 = (𝐿𝑣 \ {𝑦old}) ∪ {𝑦new}.

• 𝑣 is marked if there exists a 

neighboring pair in 𝐿𝑣

Example : 𝐽(5, 2)
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Quantum Random Walk

How to update the last bit ?

Let 𝑣 = (𝐿𝑣, 𝑏𝑣) and 𝑤 = ((𝐿𝑣 \ {𝑦old}) ∪ {𝑦new}, 𝑏𝑤) be two connected 

nodes.

Naive Idea: Check among all 𝑦𝑖’s in 𝐿𝑣 if removing 𝑦old would change 𝑏𝑣, 

idem with 𝑦new and update 𝑏𝑤 accordingly. ⇝ too slow !
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Quantum Random Walk
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Naive Idea: Check among all 𝑦𝑖’s in 𝐿𝑣 if removing 𝑦old would change 𝑏𝑣, 

idem with 𝑦new and update 𝑏𝑤 accordingly. ⇝ too slow !

How to improve it? Add more data !

Sample 𝑡1, …, 𝑡𝑟 ∈ ℱ︀ filters

𝐵𝑣
𝛽(𝑡𝑗) = ℋ︀𝛽,𝑡𝑗

∩ 𝐿𝑣

𝐷(𝑣) = {𝐵𝑣
𝛽(𝑡1), …, 𝐵𝑣

𝛽(𝑡𝑟)}
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Quantum Random Walk

Update phase

Update_phase(𝑦, 𝑣):

1 Compute 𝐾𝛽 = ℋ︀𝛽,𝑦 ∩ ℱ︀
2 For 𝑡𝑖 ∈ 𝐾𝛽:

3 update(𝑦) in 𝐵𝑣
𝛽(𝑡𝑖)

4 For 𝑦𝑖 ≠ 𝑦 in ∪𝑡𝑖∈𝐾𝛽
𝐵𝑣

𝛽(𝑡𝑖):
5 If (𝑦𝑖, 𝑦) is a neighboring pair:

6 update the last register

7 Return the new vertex

[ChaillouxLoyer21]

Do it twice in order to remove 𝑦old and add 𝑦new.

Current Complexity :

𝑇update = 2 ⋅ (|𝐾𝛽| + |𝐾𝛽| + √|𝐾𝛽| ⋅ |𝐵𝛽|)
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Improvement

How to improve the update phase ?

• Bigger 𝛽-buckets

• 𝑦 compared with 𝑦𝑖 in 𝛽-close 

filters

• Smaller 𝛽-buckets

• 𝑦 compared with 𝑦𝑖 in 𝜔-close 

filters

⇝ less time to fill the buckets
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Improvement

Tree Structure on RPC

Random Product codes : ℱ︀ = 𝐶1 × … × 𝐶𝑚, where |𝐶𝑖| = 𝑏.

For 𝑡 ∈ 𝒞︀2, we can write 𝑡 = (𝑐1, …, 𝑐𝑚) with 𝑐𝑖 ∈ 𝐶𝑖.

0

𝑐1
1

(𝑐1
1, 𝑐1

2) (𝑐1
1, 𝑐2

2)

⋮

… 𝑡𝑗−1 ((𝑐1
1, 𝑐2

2, …, 𝑐𝑖
𝑚)= 𝑡𝑗 𝑡𝑗+1 …

… (𝑐1, 𝑐𝑏
2) ∈ 𝐶1 × 𝐶2

𝑐2
1 … 𝑐𝑏

1 ∈ 𝐶1

■ 𝜔-close filters - ■ not 𝜔-close filters
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Improvement

Good Leaf Sampler

Filter Sampling [Heiser21]

Let 𝑦 ∈ 𝐵𝛼(𝑓), for any 𝜔 ∈ [𝜋
3 , 𝜋

2 ], there exists a sampling routine 

wich samples a filter 𝑡𝑗 which is 𝜔-close to 𝑦 in time 𝑁𝑜(1). (𝑁 ≔ |𝐿|)
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∑
𝑡𝑖 𝜔 -close

|𝑡𝑖⟩ ⟶ ∑
𝑡𝑖 𝜔 -close

∑
𝑦𝑗∈𝐵𝛽(𝑡𝑖)

|𝑡𝑖, 𝑦𝑖
𝑗⟩

1. Construct the list 𝐾𝜔of 𝑡𝑖’s 

𝜔-close to 𝑦,

2. Do a Grover’s search on the 

list ∪𝑡∈𝐾𝜔
𝐵𝛽(𝑡).

Time:  |𝐾𝜔| + √|𝐾𝜔| ⋅ |𝐵𝛽|

1. Preprocess the 𝜔-close filter 

sampler,

2. Do a Grover’s search on the 

above quantum state.

Time:  𝑁𝑜(1) + √|𝐾𝜔| ⋅ |𝐵𝛽|

Université de Rennes - IRISA 16 / 19



Improvement

Complexity

𝑇update = |𝐾𝛽| + |𝐾𝛽| + √|𝐾𝛽| ⋅ |𝐵𝛽|

𝑇improved_update = |𝐾𝛽| + 𝑁𝑜(1) + √|𝐾𝜔| ⋅ |𝐵𝛽|
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Improvement

Complexity

𝑇update = |𝐾𝛽| + |𝐾𝛽| + √|𝐾𝛽| ⋅ |𝐵𝛽|

𝑇improved_update = |𝐾𝛽| + 𝑁𝑜(1) + √|𝐾𝜔| ⋅ |𝐵𝛽|

𝑇LSF = 𝑁𝑐−𝜁

(
𝑁 + 𝑁1−𝑐 max{𝑁𝜁, 1}

(
𝑁𝑐1+𝜌0 + 1

max(𝑁𝑐1√𝒱︀𝑑(𝜃∗
𝛼))

(𝑁max{𝜌0,𝜌0+𝑐3
2 }+𝑐1

2 )
)


)


Université de Rennes - IRISA 17 / 19



Improvement

Complexity

• Total time: 𝑐𝑇  where 𝑇LSF = 2𝑐𝑇 𝑑+𝑜(𝑑),

• Update cost: 𝑐𝒰︀ where 𝒰︀ = 2𝑐𝒰︀𝑑+𝑜(𝑑)

Algorithms Total Time Update cost
[CL21]−1st algo 0.2605 0.0530
⤷ Our version 0.2594 0.0109
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• Update cost: 𝑐𝒰︀ where 𝒰︀ = 2𝑐𝒰︀𝑑+𝑜(𝑑)

Algorithms Total Time Update cost
[CL21]−1st algo 0.2605 0.0530
⤷ Our version 0.2594 0.0109

[Heiser21] 0.2571 no quantum walk
[CL21]−2nd algo 0.2570 0
⤷ Our version 0.2570 0

[BCSS23] 0.2563 0
⤷ Our version 0.2563 0
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Conclusion

In this work:

• We integrate the algorithm of [Heiser21] into the update phase of the 

quantum walk of [ChaillouxLoyer21].

• No further asymptotic gains through this approach.

Further research:

• Look if it works for 3-sieve algorithms (or 𝑘-sieve algorithms)
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Thank you for listening !
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