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Introduction



Lattices, Shortest Vector Problem

A Lattice is £ = {Z 18, € Z} where by, ..., b, is a basis of R¢.

,L]_'I,’I,

Shortest Vector Problem (SVP)

Given a basis of £, find a non zero shortest vector.



Motivation to solve SVP

Post-Quantum Cryptography

« NP-hard problem, believed to be quantum-resistant.
 Other problems like LWE, SIS, NTRU are derieved from SVP.
« Cryptosystems based on them: Kyber, Dilithium, Falcon.

— The security on these cryptosystems directly relies on the complexity
of solving SVP.



Sieving approach

Sieving Approach

Generate a list L of vectors and combine them to reduce there length.

Let ./ be an algorithm that, starting from a list L, of unit vectors,
constructs a list L; of vectors of norm v < 1.

2. L (Ly) with ||x| = ~,Vz € L,

3. L, = A(L,_,) with |z| = 7*,Vz € L,

Given a list L of vectors, preprocess L such that one can efficiently
find pairs of vectors close to each other.



Locality Sensitive Filtering



Sieving Algorithm, Filters

Hypothesis

Letz, € L,

$
T, +— S¢



Sieving Algorithm, Filters
Letx,z’ € L,

lz — 2’| <1< 6(z, ) sg

Filters, buckets

Let f, € S9 be a filter. We define
the a-hypercone,

= {zes?:0(f,x) <o}
The bucket B, ( f]) is defined by

B,(f;) = N L.




Sieving Algorithm, Filters
1. Sample filters { f;} and initialize
the buckets.

2. Fill the buckets B, ( fj) with the
lattice vectors.

3. Find the solution among each
buckets.

4. Repeat steps 1, 2, and 3 until you

find enough solutions.

Time Complexity

Nrep (Vv + Veinasol)



Quantum Random Walk



Basis of Quantum Computing

Grover's Search

Let L a list of size N and a function f : L — {0, 1}, there exists a

quantum algorithm which finds x € L such that f(z) = 1 using
0, (\/N ) evaluations of the function.
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Quantum Random Walk

« Setup cost: &
« Checking cost:
 Update cost: U/

The classical random walk finds a marked element in time

1 1
T=5—|——(C’—|——Z{)
= )

where € is the ratio of marked vertices and 0 the spectral gap.
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Quantum Random Walk

« Setup cost: &
« Checking cost:
 Update cost: U/

The quantum random walk find a marked element in time

T:5+%(e+%u)

where ¢ is the ratio of marked vertices and 0 the spectral gap.



Johnson Graph

B, =A{y{, ..y y, }, ixr < mn,

The graph J(n,r) :

« Nodes are subsets of r vectors
among B, (with r < n), and
data stuff

v=(L",D(v),b").

« Two nodes v, w are connected if

there exists y,4 and y,,, such
that

L* = (L” \ {Yo1a}) U {Unew }-

« v is marked if there exists a

Example : J(5,2)

neighboring pair in "



How to update the last bit ?

Letv = (L",b") and w = ((L” \ {¥,1q}) U {¥pew |, 0" ) be two connected
nodes.

Naive Idea: Check among all y,’s in L" if removing vy, would change 5",
idem with y, ... and update b accordingly. -+ too slow !
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How to update the last bit ?

Letv = (L",b") and w = ((L” \ {¥,1q}) U {¥pew |, 0" ) be two connected
nodes.

Naive Idea: Check among all y,’s in L" if removing vy, would change 5",
idem with y, ... and update b accordingly. -+ too slow !

How to improve it? Add more data !

Sample t,...,t. € F filters
' Bj(t;) = Hgy, N L

. — D(v) = {Bg(tl),...,Bg(tr)}




Update phase

—
—
— —

UPDATE_PHASE(Y, V):
Compute Ky = Hy N F
For i, € Kg:
update(y) in Bg(t;)
For y; # yin U, i Bg(t;):
If (y;,y) is a neighboring pair:
update the last register

Return the new vertex

[ChaillouxLoyer21]

Do it twice in order to remove y_; and add y,,.., -

Current Complexity :

Tipdate = 2 (\Kﬁ\ + | Kg| + \/\Kﬂ\ ' ’BB’)




Improvement



Improvement

How to improve the update phase ?

 Bigger B-buckets « Smaller S-buckets
« y compared with y, in 8-close « y compared with y, in w-close
filters filters

2+ less time to fill the buckets

Université de Rennes - IRISA 14/ 19



Tree Structure on RPC

Random Product codes : & = C; x ... x C_, where |C;| = b.

For t € C,, we can write t = (¢, ..., ¢,,) with ¢, € C..
/ 0 \
ci \cf b
(c1,¢3) (c1,¢3) (c1:¢3) € Cy x G

B w-close filters - B not w-close filters



Good Leaf Sampler

Filter Sampling [ Heiser21]

Lety € B,(f), for any w € [Z, Z|, there exists a sampling routine

wich samples a filter ¢; which is w-close to y in time /V o(1),



Good Leaf Sampler

Filter Sampling [ Heiser21]

Lety € B,(f), for any w € [Z, Z|, there exists a sampling routine
wich samples a filter ¢; which is w-close to y in time /V o(1),

Z ‘tz> — Z Z ‘tzay]

t; w -close t; w-close y,€Bg(t,
1. Construct the list K of t.’s 1. Preprocess the w-close filter
w-close to v, sampler,
2. Do a Grover’s search on the 2. Do a Grover’s search on the
list Uye i Bg(t). above quantum state.

Time: |K,|++/|K,||Bjs] Time: N°V +,/|K, |- |By|



Complexity

Topaate = | K| + [Kp| + \/\KB\ | Bg|

CFimproved_update — ‘KB‘ + NO(l) + \/|Kw‘ ) ‘BB‘



Complexity

Topaate = | K| + [Kp| + \/\KB\ | Bg|

CFimproved_update — ‘KB‘ + NO(l) + \/|Kw‘ ) ‘BB‘

1 pPo*es €1
Tigp = N“¢| N + N1—¢ NS, 1} | Nertro 4 ( Nmax{po, 2% }+7)
LSF ( max{ } ( max(NCl /Vd(‘gfx»




Complexity

- Total time: ¢ where Ty qp = 9crdtol ,

d)

. Update cost: ¢, where U = 2¢ud+o(d)

Algorithms Total Time Update cost
[CL21]-1st algo 0.2605 0.0530
S Qur version 0.2594 0.0109




Complexity

- Total time: ¢ where Ty qp = 9crdtol ,

d)

. Update cost: ¢, where U = 2¢ud+o(d)

Algorithms Total Time Update cost
[CL21]-1st algo 0.2605 0.0530
S Qur version 0.2594 0.0109
[Heiser21] 0.2571 no quantum walk
[CL21]-2nd algo 0.2570 0
[BCSS23] 0.2563 0




Conclusion

In this work:

« We integrate the algorithm of [Heiser21] into the update phase of the
quantum walk of [ChaillouxLoyer21].
« No further asymptotic gains through this approach.

Further research:

« Look if it works for 3-sieve algorithms (or k-sieve algorithms)



Conclusion

In this work:

« We integrate the algorithm of [Heiser21] into the update phase of the
quantum walk of [ChaillouxLoyer21].
« No further asymptotic gains through this approach.

Further research:

« Look if it works for 3-sieve algorithms (or k-sieve algorithms)

Thank you for listening !
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