
Almost Improving Quantum

Lattice Sieving
Journées Informatique Quantique 2026

Mathias BOUCHER

Introduction

Introduction

Lattices, Shortest Vector Problem

A Lattice is ℒ︀ = {∑𝑑
𝑖=1 𝑠𝑖𝒃𝒊 : 𝑠𝑖 ∈ ℤ} where 𝒃𝟏, …, 𝒃𝒅 is a basis of ℝ𝑑.

Shortest Vector Problem (SVP)

Given a basis of ℒ︀, find a non zero shortest vector.

Université de Rennes - IRISA 2 / 19

Introduction

Motivation to solve SVP

Post-Quantum Cryptography

• NP-hard problem, believed to be quantum-resistant.

• Other problems like LWE, SIS, NTRU are derieved from SVP.

• Cryptosystems based on them: Kyber, Dilithium, Falcon.

→ The security on these cryptosystems directly relies on the complexity

of solving SVP.

Université de Rennes - IRISA 3 / 19

Introduction

Sieving approach

Sieving Approach

Generate a list 𝐿 of vectors and combine them to reduce there length.

Let 𝒜︀ be an algorithm that, starting from a list 𝐿0 of unit vectors,

constructs a list 𝐿1 of vectors of norm 𝛾 < 1.

1. 𝐿0 = 𝐿 with ‖𝑥‖ = 1, ∀𝑥 ∈ 𝐿0
2. 𝐿1 = 𝒜︀(𝐿0) with ‖𝑥‖ = 𝛾, ∀𝑥 ∈ 𝐿1

⋮
3. 𝐿𝑘 = 𝒜︀(𝐿𝑘−1) with ‖𝑥‖ = 𝛾𝑘, ∀𝑥 ∈ 𝐿𝑘

Given a list 𝐿 of vectors, preprocess 𝐿 such that one can efficiently

find pairs of vectors close to each other.

Université de Rennes - IRISA 4 / 19

Locality Sensitive Filtering

Locality Sensitive Filtering

Sieving Algorithm, Filters

Hypothesis

Let 𝑥𝑖 ∈ 𝐿,

𝑥𝑖 ⟵
$

𝕊𝑑

Université de Rennes - IRISA 6 / 19

Locality Sensitive Filtering

Sieving Algorithm, Filters

Let 𝑥, 𝑥′ ∈ 𝐿,

‖𝑥 − 𝑥′‖ ≤ 1 ⇔ 𝜃(𝑥, 𝑥′) ≤ 𝜋
3

Filters, buckets

Let 𝑓𝑗 ∈ 𝕊𝑑 be a filter. We define

the 𝛼-hypercone,

ℋ︀𝛼,𝑓𝑗
= {𝑥 ∈ 𝕊𝑑 : 𝜃(𝑓, 𝑥) ≤ 𝛼}.

The bucket 𝐵𝛼(𝑓𝑗) is defined by

𝐵𝛼(𝑓𝑗) = ℋ︀𝛼,𝑓𝑗
∩ 𝐿.

Université de Rennes - IRISA 6 / 19

Locality Sensitive Filtering

Sieving Algorithm, Filters

1. Sample filters {𝑓𝑖}𝑖 and initialize

the buckets.

2. Fill the buckets 𝐵𝛼(𝑓𝑗) with the

lattice vectors.

3. Find the solution among each

buckets.

4. Repeat steps 1, 2, and 3 until you

find enough solutions.

Time Complexity

𝑁REP(𝑁INIT + 𝑁FindSol)

Université de Rennes - IRISA 6 / 19

Quantum Random Walk

Quantum Random Walk

Basis of Quantum Computing

Grover's Search

Let 𝐿 a list of size 𝑁 and a function 𝑓 : 𝐿 → {0, 1}, there exists a

quantum algorithm which finds 𝑥 ∈ 𝐿 such that 𝑓(𝑥) = 1 using

𝑂(
√

𝑁) evaluations of the function.

1√
𝑁

∑
𝑥∈𝐿

|𝑥⟩

Université de Rennes - IRISA 8 / 19

Quantum Random Walk

Quantum Random Walk

• Setup cost: 𝒮︀
• Checking cost: 𝒞︀
• Update cost: 𝒰︀

The classical random walk finds a marked element in time

𝑇 = 𝒮︀ + 1
𝜀
(𝒞︀ + 1

𝛿
𝒰︀)

where 𝜀 is the ratio of marked vertices and 𝛿 the spectral gap.

Université de Rennes - IRISA 9 / 19

Quantum Random Walk

Quantum Random Walk

• Setup cost: 𝒮︀
• Checking cost: 𝒞︀
• Update cost: 𝒰︀

The classical random walk finds a marked element in time

𝑇 = 𝒮︀ + 1
𝜀
(𝒞︀ + 1

𝛿
𝒰︀)

where 𝜀 is the ratio of marked vertices and 𝛿 the spectral gap.

Université de Rennes - IRISA 9 / 19

Quantum Random Walk

Quantum Random Walk

• Setup cost: 𝒮︀
• Checking cost: 𝒞︀
• Update cost: 𝒰︀

The classical random walk finds a marked element in time p

𝑇 = 𝒮︀ + 1
𝜀
(𝒞︀ + 1

𝛿
𝒰︀)

where 𝜀 is the ratio of marked vertices and 𝛿 the spectral gap.

Université de Rennes - IRISA 9 / 19

Quantum Random Walk

Quantum Random Walk

• Setup cost: 𝒮︀
• Checking cost: 𝒞︀
• Update cost: 𝒰︀

The classical random walk finds a marked element in time

𝑇 = 𝒮︀ + 1
𝜀
(𝒞︀ + 1

𝛿
𝒰︀)

where 𝜀 is the ratio of marked vertices and 𝛿 the spectral gap.

Université de Rennes - IRISA 9 / 19

Quantum Random Walk

Quantum Random Walk

• Setup cost: 𝒮︀
• Checking cost: 𝒞︀
• Update cost: 𝒰︀

The quantum random walk find a marked element in time

𝑇 = 𝒮︀ + 1√
𝜀
(𝒞︀ + 1√

𝛿
𝒰︀)

where 𝜀 is the ratio of marked vertices and 𝛿 the spectral gap.

Université de Rennes - IRISA 9 / 19

Quantum Random Walk

Johnson Graph

𝐵𝛼 = {𝑦1, …, 𝑦𝑛}, fix 𝑟 < 𝑛,

The graph 𝐽(𝑛, 𝑟) :

• Nodes are subsets of 𝑟 vectors

among 𝐵𝛼 (with 𝑟 ≪ 𝑛), and

data stuff

𝑣 = (𝐿𝑣, 𝐷(𝑣), 𝑏𝑣).

• Two nodes 𝑣, 𝑤 are connected if

there exists 𝑦old and 𝑦new such

that

𝐿𝑤 = (𝐿𝑣 \ {𝑦old}) ∪ {𝑦new}.

• 𝑣 is marked if there exists a

neighboring pair in 𝐿𝑣

Example : 𝐽(5, 2)

Université de Rennes - IRISA 10 / 19

Quantum Random Walk

How to update the last bit ?

Let 𝑣 = (𝐿𝑣, 𝑏𝑣) and 𝑤 = ((𝐿𝑣 \ {𝑦old}) ∪ {𝑦new}, 𝑏𝑤) be two connected

nodes.

Naive Idea: Check among all 𝑦𝑖’s in 𝐿𝑣 if removing 𝑦old would change 𝑏𝑣,

idem with 𝑦new and update 𝑏𝑤 accordingly. ⇝ too slow !

Université de Rennes - IRISA 11 / 19

Quantum Random Walk

How to update the last bit ?

Let 𝑣 = (𝐿𝑣, 𝑏𝑣) and 𝑤 = ((𝐿𝑣 \ {𝑦old}) ∪ {𝑦new}, 𝑏𝑤) be two connected

nodes.

Naive Idea: Check among all 𝑦𝑖’s in 𝐿𝑣 if removing 𝑦old would change 𝑏𝑣,

idem with 𝑦new and update 𝑏𝑤 accordingly. ⇝ too slow !

How to improve it? Add more data !

Université de Rennes - IRISA 11 / 19

Quantum Random Walk

How to update the last bit ?

Let 𝑣 = (𝐿𝑣, 𝑏𝑣) and 𝑤 = ((𝐿𝑣 \ {𝑦old}) ∪ {𝑦new}, 𝑏𝑤) be two connected

nodes.

Naive Idea: Check among all 𝑦𝑖’s in 𝐿𝑣 if removing 𝑦old would change 𝑏𝑣,

idem with 𝑦new and update 𝑏𝑤 accordingly. ⇝ too slow !

How to improve it? Add more data !

Sample 𝑡1, …, 𝑡𝑟 ∈ ℱ︀ filters

𝐵𝑣
𝛽(𝑡𝑗) = ℋ︀𝛽,𝑡𝑗

∩ 𝐿𝑣

𝐷(𝑣) = {𝐵𝑣
𝛽(𝑡1), …, 𝐵𝑣

𝛽(𝑡𝑟)}

Université de Rennes - IRISA 11 / 19

Quantum Random Walk

Update phase

Update_phase(𝑦, 𝑣):

1 Compute 𝐾𝛽 = ℋ︀𝛽,𝑦 ∩ ℱ︀
2 For 𝑡𝑖 ∈ 𝐾𝛽:

3 update(𝑦) in 𝐵𝑣
𝛽(𝑡𝑖)

4 For 𝑦𝑖 ≠ 𝑦 in ∪𝑡𝑖∈𝐾𝛽
𝐵𝑣

𝛽(𝑡𝑖):
5 If (𝑦𝑖, 𝑦) is a neighboring pair:

6 update the last register

7 Return the new vertex

[ChaillouxLoyer21]

Do it twice in order to remove 𝑦old and add 𝑦new.

Current Complexity :

𝑇update = 2 ⋅ (|𝐾𝛽| + |𝐾𝛽| + √|𝐾𝛽| ⋅ |𝐵𝛽|)

Université de Rennes - IRISA 12 / 19

Improvement

Improvement

How to improve the update phase ?

• Bigger 𝛽-buckets

• 𝑦 compared with 𝑦𝑖 in 𝛽-close

filters

• Smaller 𝛽-buckets

• 𝑦 compared with 𝑦𝑖 in 𝜔-close

filters

⇝ less time to fill the buckets

Université de Rennes - IRISA 14 / 19

Improvement

Tree Structure on RPC

Random Product codes : ℱ︀ = 𝐶1 × … × 𝐶𝑚, where |𝐶𝑖| = 𝑏.

For 𝑡 ∈ 𝒞︀2, we can write 𝑡 = (𝑐1, …, 𝑐𝑚) with 𝑐𝑖 ∈ 𝐶𝑖.

0

𝑐1
1

(𝑐1
1, 𝑐1

2) (𝑐1
1, 𝑐2

2)

⋮

… 𝑡𝑗−1 ((𝑐1
1, 𝑐2

2, …, 𝑐𝑖
𝑚)= 𝑡𝑗 𝑡𝑗+1 …

… (𝑐1, 𝑐𝑏
2) ∈ 𝐶1 × 𝐶2

𝑐2
1 … 𝑐𝑏

1 ∈ 𝐶1

■ 𝜔-close filters - ■ not 𝜔-close filters

Université de Rennes - IRISA 15 / 19

Improvement

Good Leaf Sampler

Filter Sampling [Heiser21]

Let 𝑦 ∈ 𝐵𝛼(𝑓), for any 𝜔 ∈ [𝜋
3 , 𝜋

2], there exists a sampling routine

wich samples a filter 𝑡𝑗 which is 𝜔-close to 𝑦 in time 𝑁𝑜(1). (𝑁 ≔ |𝐿|)

Université de Rennes - IRISA 16 / 19

Improvement

Good Leaf Sampler

Filter Sampling [Heiser21]

Let 𝑦 ∈ 𝐵𝛼(𝑓), for any 𝜔 ∈ [𝜋
3 , 𝜋

2], there exists a sampling routine

wich samples a filter 𝑡𝑗 which is 𝜔-close to 𝑦 in time 𝑁𝑜(1). (𝑁 ≔ |𝐿|)

∑
𝑡𝑖 𝜔 -close

|𝑡𝑖⟩ ⟶ ∑
𝑡𝑖 𝜔 -close

∑
𝑦𝑗∈𝐵𝛽(𝑡𝑖)

|𝑡𝑖, 𝑦𝑖
𝑗⟩

1. Construct the list 𝐾𝜔of 𝑡𝑖’s

𝜔-close to 𝑦,

2. Do a Grover’s search on the

list ∪𝑡∈𝐾𝜔
𝐵𝛽(𝑡).

Time: |𝐾𝜔| + √|𝐾𝜔| ⋅ |𝐵𝛽|

1. Preprocess the 𝜔-close filter

sampler,

2. Do a Grover’s search on the

above quantum state.

Time: 𝑁𝑜(1) + √|𝐾𝜔| ⋅ |𝐵𝛽|

Université de Rennes - IRISA 16 / 19

Improvement

Complexity

𝑇update = |𝐾𝛽| + |𝐾𝛽| + √|𝐾𝛽| ⋅ |𝐵𝛽|

𝑇improved_update = |𝐾𝛽| + 𝑁𝑜(1) + √|𝐾𝜔| ⋅ |𝐵𝛽|

Université de Rennes - IRISA 17 / 19

Improvement

Complexity

𝑇update = |𝐾𝛽| + |𝐾𝛽| + √|𝐾𝛽| ⋅ |𝐵𝛽|

𝑇improved_update = |𝐾𝛽| + 𝑁𝑜(1) + √|𝐾𝜔| ⋅ |𝐵𝛽|

𝑇LSF = 𝑁𝑐−𝜁

(
𝑁 + 𝑁1−𝑐 max{𝑁𝜁, 1}

(
𝑁𝑐1+𝜌0 + 1

max(𝑁𝑐1√𝒱︀𝑑(𝜃∗
𝛼))

(𝑁max{𝜌0,𝜌0+𝑐3
2 }+𝑐1

2)
)

)

Université de Rennes - IRISA 17 / 19

Improvement

Complexity

• Total time: 𝑐𝑇 where 𝑇LSF = 2𝑐𝑇 𝑑+𝑜(𝑑),

• Update cost: 𝑐𝒰︀ where 𝒰︀ = 2𝑐𝒰︀𝑑+𝑜(𝑑)

Algorithms Total Time Update cost
[CL21]−1st algo 0.2605 0.0530
⤷ Our version 0.2594 0.0109

Université de Rennes - IRISA 18 / 19

Improvement

Complexity

• Total time: 𝑐𝑇 where 𝑇LSF = 2𝑐𝑇 𝑑+𝑜(𝑑),

• Update cost: 𝑐𝒰︀ where 𝒰︀ = 2𝑐𝒰︀𝑑+𝑜(𝑑)

Algorithms Total Time Update cost
[CL21]−1st algo 0.2605 0.0530
⤷ Our version 0.2594 0.0109

[Heiser21] 0.2571 no quantum walk
[CL21]−2nd algo 0.2570 0
⤷ Our version 0.2570 0

[BCSS23] 0.2563 0
⤷ Our version 0.2563 0

Université de Rennes - IRISA 18 / 19

Conclusion

In this work:

• We integrate the algorithm of [Heiser21] into the update phase of the

quantum walk of [ChaillouxLoyer21].

• No further asymptotic gains through this approach.

Further research:

• Look if it works for 3-sieve algorithms (or 𝑘-sieve algorithms)

Conclusion

In this work:

• We integrate the algorithm of [Heiser21] into the update phase of the

quantum walk of [ChaillouxLoyer21].

• No further asymptotic gains through this approach.

Further research:

• Look if it works for 3-sieve algorithms (or 𝑘-sieve algorithms)

Thank you for listening !

	Almost Improving Quantum Lattice Sieving
	Journées Informatique Quantique 2026

	Introduction
	Lattices, Shortest Vector Problem
	Motivation to solve SVP
	Sieving approach

	Locality Sensitive Filtering
	Sieving Algorithm, Filters

	Quantum Random Walk
	Basis of Quantum Computing
	Quantum Random Walk
	Johnson Graph
	How to update the last bit ?
	Update phase

	Improvement
	How to improve the update phase ?
	Tree Structure on RPC
	Good Leaf Sampler
	Complexity
	Complexity

	Conclusion

