Almost Improving Quantum
Lattice Sieving

Journées Informatique Quantique 2026
Mathias BOUCHER

>\"/< Université
4\ de Rennes

&:IRISA

Introduction

Lattices, Shortest Vector Problem

A Lattice is £ = {Z 18, € Z} where by, ..., b, is a basis of R¢.

,L]_'I,’I,

Shortest Vector Problem (SVP)

Given a basis of £, find a non zero shortest vector.

Motivation to solve SVP

Post-Quantum Cryptography

« NP-hard problem, believed to be quantum-resistant.
 Other problems like LWE, SIS, NTRU are derieved from SVP.
« Cryptosystems based on them: Kyber, Dilithium, Falcon.

— The security on these cryptosystems directly relies on the complexity
of solving SVP.

Sieving approach

Sieving Approach

Generate a list L of vectors and combine them to reduce there length.

Let ./ be an algorithm that, starting from a list L, of unit vectors,
constructs a list L; of vectors of norm v < 1.

2. L (Ly) with ||x| = ~,Vz € L,

3. L, = A(L,_,) with |z| = 7*,Vz € L,

Given a list L of vectors, preprocess L such that one can efficiently
find pairs of vectors close to each other.

Locality Sensitive Filtering

Sieving Algorithm, Filters

Hypothesis

Letz, € L,

$
T, +— S¢

Sieving Algorithm, Filters
Letx,z’ € L,

lz — 2’| <1< 6(z,) sg

Filters, buckets

Let f, € S9 be a filter. We define
the a-hypercone,

= {zes?:0(f,x) <o}
The bucket B, (f]) is defined by

B,(f;) = N L.

Sieving Algorithm, Filters
1. Sample filters { f;} and initialize
the buckets.

2. Fill the buckets B, (fj) with the
lattice vectors.

3. Find the solution among each
buckets.

4. Repeat steps 1, 2, and 3 until you

find enough solutions.

Time Complexity

Nrep (Vv + Veinasol)

Quantum Random Walk

Basis of Quantum Computing

Grover's Search

Let L a list of size N and a function f : L — {0, 1}, there exists a

quantum algorithm which finds x € L such that f(z) = 1 using
0, (\/N) evaluations of the function.

1
\/—sz

xelL

Quantum Random Walk

« Setup cost: &
« Checking cost:
 Update cost: U/

The classical random walk finds a marked element in time

1 1
T=5—|——(C’—|——Z{)
=)

where € is the ratio of marked vertices and 0 the spectral gap.

Quantum Random Walk

« Setup cost: &
« Checking cost:
 Update cost: U/

The classical random walk finds a marked element in time

1 1
T=5—|——(C’—|——Z{)
=)

where € is the ratio of marked vertices and 0 the spectral gap.

Quantum Random Walk

« Setup cost: &
« Checking cost:
 Update cost: U/

The classical random walk finds a marked element in time p

1 1
T=5—|——(C’—|——Z{)
=)

where € is the ratio of marked vertices and 0 the spectral gap.

Quantum Random Walk

« Setup cost: &
« Checking cost:
 Update cost: U/

The classical random walk finds a marked element in time

1 1
T=5—|——(C’—|——Z{)
=)

where € is the ratio of marked vertices and 0 the spectral gap.

Quantum Random Walk

« Setup cost: &
« Checking cost:
 Update cost: U/

The quantum random walk find a marked element in time

T:5+%(e+%u)

where ¢ is the ratio of marked vertices and 0 the spectral gap.

Johnson Graph

B, =A{y{, ..y y, }, ixr < mn,

The graph J(n,r) :

« Nodes are subsets of r vectors
among B, (with r < n), and
data stuff

v=(L",D(v),b").

« Two nodes v, w are connected if

there exists y,4 and y,,, such
that

L* = (L” \ {Yo1a}) U {Unew }-

« v is marked if there exists a

Example : J(5,2)

neighboring pair in "

How to update the last bit ?

Letv = (L",b") and w = ((L” \ {¥,1q}) U {¥pew |, 0") be two connected
nodes.

Naive Idea: Check among all y,’s in L" if removing vy, would change 5",
idem with y, ... and update b accordingly. -+ too slow !

How to update the last bit ?

Letv = (L",b") and w = ((L” \ {¥,1q}) U {¥pew |, 0") be two connected
nodes.

Naive Idea: Check among all y,’s in L" if removing vy, would change 5",
idem with y, ... and update b accordingly. -+ too slow !

How to improve it? Add more data !

How to update the last bit ?

Letv = (L",b") and w = ((L” \ {¥,1q}) U {¥pew |, 0") be two connected
nodes.

Naive Idea: Check among all y,’s in L" if removing vy, would change 5",
idem with y, ... and update b accordingly. -+ too slow !

How to improve it? Add more data !

Sample t,...,t. € F filters
' Bj(t;) = Hgy, N L

. — D(v) = {Bg(tl),...,Bg(tr)}

Update phase

—
—
— —

UPDATE_PHASE(Y, V):
Compute Ky = Hy N F
For i, € Kg:
update(y) in Bg(t;)
For y; # yin U, i Bg(t;):
If (y;,y) is a neighboring pair:
update the last register

Return the new vertex

[ChaillouxLoyer21]

Do it twice in order to remove y_; and add y,,.., -

Current Complexity :

Tipdate = 2 (\Kﬁ\ + | Kg| + \/\Kﬂ\ ' ’BB’)

Improvement

Improvement

How to improve the update phase ?

 Bigger B-buckets « Smaller S-buckets
« y compared with y, in 8-close « y compared with y, in w-close
filters filters

2+ less time to fill the buckets

Université de Rennes - IRISA 14/ 19

Tree Structure on RPC

Random Product codes : & = C; x ... x C_, where |C;| = b.

For t € C,, we can write t = (¢, ..., ¢,,) with ¢, € C..
/ 0 \
ci \cf b
(c1,¢3) (c1,¢3) (c1:¢3) € Cy x G

B w-close filters - B not w-close filters

Good Leaf Sampler

Filter Sampling [Heiser21]

Lety € B,(f), for any w € [Z, Z|, there exists a sampling routine

wich samples a filter ¢; which is w-close to y in time /V o(1),

Good Leaf Sampler

Filter Sampling [Heiser21]

Lety € B,(f), for any w € [Z, Z|, there exists a sampling routine
wich samples a filter ¢; which is w-close to y in time /V o(1),

Z ‘tz> — Z Z ‘tzay]

t; w -close t; w-close y,€Bg(t,
1. Construct the list K of t.’s 1. Preprocess the w-close filter
w-close to v, sampler,
2. Do a Grover’s search on the 2. Do a Grover’s search on the
list Uye i Bg(t). above quantum state.

Time: |K,|++/|K,||Bjs] Time: N°V +,/|K, |- |By|

Complexity

Topaate = | K| + [Kp| + \/\KB\ | Bg|

CFimproved_update — ‘KB‘ + NO(l) + \/|Kw‘) ‘BB‘

Complexity

Topaate = | K| + [Kp| + \/\KB\ | Bg|

CFimproved_update — ‘KB‘ + NO(l) + \/|Kw‘) ‘BB‘

1 pPo*es €1
Tigp = N“¢| N + N1—¢ NS, 1} | Nertro 4 (Nmax{po, 2% }+7)
LSF (max{ } (max(NCl /Vd(‘gfx»

Complexity

- Total time: ¢ where Ty qp = 9crdtol ,

d)

. Update cost: ¢, where U = 2¢ud+o(d)

Algorithms Total Time Update cost
[CL21]-1st algo 0.2605 0.0530
S Qur version 0.2594 0.0109

Complexity

- Total time: ¢ where Ty qp = 9crdtol ,

d)

. Update cost: ¢, where U = 2¢ud+o(d)

Algorithms Total Time Update cost
[CL21]-1st algo 0.2605 0.0530
S Qur version 0.2594 0.0109
[Heiser21] 0.2571 no quantum walk
[CL21]-2nd algo 0.2570 0
[BCSS23] 0.2563 0

Conclusion

In this work:

« We integrate the algorithm of [Heiser21] into the update phase of the
quantum walk of [ChaillouxLoyer21].
« No further asymptotic gains through this approach.

Further research:

« Look if it works for 3-sieve algorithms (or k-sieve algorithms)

Conclusion

In this work:

« We integrate the algorithm of [Heiser21] into the update phase of the
quantum walk of [ChaillouxLoyer21].
« No further asymptotic gains through this approach.

Further research:

« Look if it works for 3-sieve algorithms (or k-sieve algorithms)

Thank you for listening !

	Almost Improving Quantum Lattice Sieving
	Journées Informatique Quantique 2026

	Introduction
	Lattices, Shortest Vector Problem
	Motivation to solve SVP
	Sieving approach

	Locality Sensitive Filtering
	Sieving Algorithm, Filters

	Quantum Random Walk
	Basis of Quantum Computing
	Quantum Random Walk
	Johnson Graph
	How to update the last bit ?
	Update phase

	Improvement
	How to improve the update phase ?
	Tree Structure on RPC
	Good Leaf Sampler
	Complexity
	Complexity

	Conclusion

