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Adiabatic quantum computing
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Adiabatic quantum computing
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Adiabatic quantum computing

» Physically motivated
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Adiabatic quantum computing

» Physically motivated
> Natively supported

> Serves as inspiration for circuit algorithms
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Adiabatic quantum computing

» Can this setup be ported to a circuit based quantum computer?
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Adiabatic quantum computing

» Can this setup be ported to a circuit based quantum computer?
» More flexibility!
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Rescaling time in the Schrodinger equation
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The gap of a path of Hamiltonians

Let H(s) be a Hamiltonian for all s € [0, 1].
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A baseline result

Let H(s) be a twice continuously differentiable time-dependent Hamiltonian. Let U(s)
be generated by —iTH(s). Then
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Poisson-distributed dephasing
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Poisson processes
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Poisson processes
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Poisson processes
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Deriving dynamics: unitaries

We need to consider classical randomness: |¢)) — p

dp = (U(s)pU(s)* - p) dN
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Deriving dynamics: unitaries

We need to consider classical randomness: |¢)) — p
dp = (U(s)pU(s)* - p) dN
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An adiabatic theorem

Let p(s) be the solution of the differential equation

dp
E - )\Cs(p)'

Suppose P(s) is the ground state projector and
> Tr (P(0)p(0)) =1,
» Tr(P(s)Y) =0 for all Y in the image of Ls;
> there exists X(s) such that P'(s) = L3(X(s)) for all s € [0,1].
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Discrete adiabatic theorem

For Ls(p) = U(s)pU(s)* — p, we can take

X=P1l-wU"+(1-wU)"F
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Discrete adiabatic theorem

For Ls(p) = U(s)pU(s)* — p, we can take

X=P1l-wU"+(1-wU)"F

Theorem

Let U(s) be a norm-continuous bounded time-dependent unitary operator that is twice

continuously differentiable. Then
[ /1HWH %
2 ds.
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Choosing the unitary U
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Qubitisation
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Qubitisation
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Qubitisation

The infidelity under Poissonnised qubitisation is bounded by
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Time-independent Hamiltonian evolution

The infidelity under Poissonnised unitary evolution with U(s) = e~"H(5) s bounded by
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Time-independent Hamiltonian evolution
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Trotter step

Now assume Hs = (1 — s)Ho + sH;.

Theorem

The infidelity under Poissonnised unitary evolution with U(s) = e~"h(1=s)Hog—ihsth

bounded by

Hy— H
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Phase randomisation
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Phase randomisation

dp _ > —iTHs __iTHs
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The infidelity is bounded by
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Procedure

Adiabatic theorem
H/ 1 H// H/ 2
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Ag lbe Jo \ g g2
, e [ /1 U1 V1P
D te adiabat U 1-F< 2 8 d
iscrete adiabatic (general U) S b.c.+ : <)\g2 + v ) s
iy 2||H'|| ! 2|H'|| [H1I> + 1Al 32 ||H|P
Qubitised U 1-F<—— +2/ ds
\/1—w2)\g2 b.c. 0 ( /1_w3/2)\g2 \/1—w2)\g2 1—w? /\g3 )
o , IH'l /’1 IH" |, IH
Time-ind dent lut 1-F<2— 4 8 d
Ime-independent evolution < )\hg2 b4c,Jr Jo ()\hg2 + )\hg3> 5
|Ho — Hull /1 IHs — K |Ho — H1|12
Trotter st 1-F<4——— 8 32 d
[CLAtFoAls = "Xhlg —h2)2 b ° (/\(g —h22 T k(g = h/2)3> s
H' 1 H" H' 2
Adiabatic time-evolution 1-F< H)\ng b,c.+ v/o (H)\gJ +5 H/\g! )ds

23/27



24/27



» Four discrete procedures for implementing adiabatic dynamics
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» Four discrete procedures for implementing adiabatic dynamics

> If we just want to track the eigenstate, the discretisation cost scales linearly in
time (cfr. [Yi21], [AnCostaBerry25])
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Open questions

» Other operations / unitaries?
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Open questions

» Other operations / unitaries?

> Different paths of Hamiltonians?
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Open questions

» Other operations / unitaries?
> Different paths of Hamiltonians?

> Integrators other than Poisson processes (e.g. noise)

26 /27



Bibliography

[Yi21] Changhao Yi. 'Success of Digital Adiabatic Simulation with Large Trotter Step'.
Physical Review A, vol. 104, no. 5, Nov. 2021, p. 052603.

aBerry25] Dong An, Pedro C. S. Costa and Dominic W. Berry. 'Large time-step
discretisation of adiabatic quantum dynamics'.
https://arxiv.org/abs/2509.00171v1.

27 /27


https://arxiv.org/abs/2509.00171v1

	Eigenpath traversal (Adiabatic QC)
	Poisson-distributed dephasing
	Poisson processes
	Alternative dynamics
	An adiabatic theorem

	Choosing the unitary U
	Qubitisation
	Time-independent Hamiltonian evolution
	Trotter step
	Phase randomisation

	Conclusion

