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The gap of a path of Hamiltonians

Let H(s) be a Hamiltonian for all s ∈ [0, 1].

s

E

ω

b0

b1

0 1

g
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A baseline result

Theorem

Let H(s) be a twice continuously differentiable time-dependent Hamiltonian. Let U(s)
be generated by −iTH(s). Then

√
1− F ≤ 1

T

∥H ′∥
g2

∣∣∣
s=0

+
1

T

∥H ′∥
g2

∣∣∣
s=1

+
1

T

∫ 1

0

(∥H ′′∥
g2

+
(
2
√
2 + 1

)∥H ′∥2

g3

)
ds.

T = O

(
∥H ′∥2

g3
m

+
∥H ′′∥
g2
m

)

T e−i
∫ 1
0 Hs ds =

n∏
k=0

e
−i
n
H( k

n
) + O

(T 2

n

)
.
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Poisson-distributed dephasing
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Poisson processes
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Poisson processes

s
×× × ×××× × × × ×××

N
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Deriving dynamics: unitaries

We need to consider classical randomness: |ψ⟩ → ρ

dρ =
(
U(s)ρU(s)∗ − ρ

)
dN

dρ =
(
U(s)ρU(s)∗ − ρ

)
λ ds

dρ

ds
= λ

(
U(s)ρU(s)∗ − ρ

)
.
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An adiabatic theorem

Theorem

Let ρ(s) be the solution of the differential equation

dρ

ds
= λLs(ρ).

Suppose P(s) is the ground state projector and

▶ Tr
(
P(0)ρ(0)

)
= 1;

▶ Tr(P(s)Y ) = 0 for all Y in the image of Ls ;

▶ there exists X (s) such that P ′(s) = L∗
s

(
X (s)

)
for all s ∈ [0, 1].

Then

1− F ≤ ∥X∥
λ

∣∣∣∣
s=0

+
∥X∥
λ

∣∣∣∣
s=1

+

∫ 1

0

(∥X ′∥
λ

+
∣∣∣( 1
λ

)′∣∣∣∥X∥
)
ds.
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Discrete adiabatic theorem

For Ls(ρ) = U(s)ρU(s)∗ − ρ, we can take

X = P ′(1 − ωU∗)+ + (1 − ωU)+P ′

Theorem

Let U(s) be a norm-continuous bounded time-dependent unitary operator that is twice
continuously differentiable. Then

1− F ≤ ∥U ′∥
λg2

∣∣∣
s=0

+
∥U ′∥
λg2

∣∣∣
s=1

+ 2

∫ 1

0

(
∥U ′′∥
λg2

+ 8
∥U ′∥2

λg3
+

∥U ′∥
g2

)
ds.
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Choosing the unitary U
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Qubitisation

U(s) =

(
H(s) −

√
1 − H(s)2√

1 − H(s)2 H(s)

)

σ(H)

σ

(
H −

√
1 − H2

√
1 − H2 H

)
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Qubitisation

Theorem

The infidelity under Poissonnised qubitisation is bounded by

1− F ≤ 2∥H ′∥√
1− ω2λg2

∣∣∣∣
s=0

+
2∥H ′∥√

1− ω2λg2

∣∣∣∣
s=1

+ 2

∫ 1

0

( 2∥H ′∥
√
1− ω

3/2
λg2

+
∥H ′∥2 + ∥H ′′∥√

1− ω2λg2
+

32

1− ω2

∥H ′∥2

λg3

)
ds.
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Time-independent Hamiltonian evolution

Theorem

The infidelity under Poissonnised unitary evolution with U(s) = e−ihH(s) is bounded by

1− F ≤ 2
∥H ′∥
λhg2

∣∣∣∣
s=0

+ 2
∥H ′∥
λhg2

∣∣∣∣
s=1

+ 4

∫ 1

0

(∥H ′′∥
λhg2

+ 8
∥H ′∥
λhg3

)
ds

T e−i
∫ 1
0 H(s) ds ≈

∏n
k=0 e

−i 1
n
H( k

n
)
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Trotter step

Now assume Hs = (1− s)H0 + sH1.

Theorem

The infidelity under Poissonnised unitary evolution with U(s) = e−ih(1−s)H0e−ihsH1 is
bounded by

1− F ≤ 4
∥H0 − H1∥
λh(g − h/2)2

∣∣∣∣
s=0

+ 4
∥H0 − H1∥
λh(g − h/2)2

∣∣∣∣
s=1

+ 8

∫ 1

0

( ∥H2
0 − H2

1∥
λ(g − h/2)2

+ 32
∥H0 − H1∥2

λh(g − h/2)3

)
ds
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Phase randomisation

dρ

ds
= λ

(∫ ∞

−∞
e−iτHsρe iτHs dµ(τ)− ρ

)

Theorem

The infidelity is bounded by

1− F ≤ ∥H ′∥
λg

∣∣∣
s=0

+
∥H ′∥
λg

∣∣∣
s=1

+

∫ 1

0

(∥H ′′∥
λg

+ 4
∥H ′∥2

λg2

)
ds
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Procedure Adiabatic theorem

Phase randomisation 1− F ≤ ∥H ′∥
λg

∣∣∣
b.c.

+

∫ 1

0

(∥H ′′∥
λg

+ 4
∥H ′∥2

λg2

)
ds

Discrete adiabatic (general U) 1− F ≤ ∥U ′∥
λg2

∣∣∣
b.c.

+ 2

∫ 1

0

(∥U ′′∥
λg2

+ 8
∥U ′∥2

λg3

)
ds

Qubitised U 1− F ≤ 2∥H ′∥√
1− ω2λg2

∣∣∣
b.c.

+ 2

∫ 1

0

( 2∥H ′∥
√
1− ω

3/2
λg2

+
∥H ′∥2 + ∥H ′′∥√

1− ω2λg2
+

32

1− ω2

∥H ′∥2

λg3

)
ds

Time-independent evolution 1− F ≤ 2
∥H ′∥
λhg2

∣∣∣
b.c.

+ 4

∫ 1

0

(∥H ′′∥
λhg2

+ 8
∥H ′∥
λhg3

)
ds

Trotter step 1− F ≤ 4
∥H0 − H1∥
λh(g − h/2)2

∣∣∣
b.c.

+ 8

∫ 1

0

( ∥H2
0 − H2

1∥
λ(g − h/2)2

+ 32
∥H0 − H1∥2

λh(g − h/2)3

)
ds

Adiabatic time-evolution 1− F ≤ ∥H ′∥
λg2

∣∣∣
b.c.

+

∫ 1

0

(∥H ′′∥
λg2

+ 5
∥H ′∥2

λg3

)
ds

23 / 27



Conclusion
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▶ Four discrete procedures for implementing adiabatic dynamics

▶ If we just want to track the eigenstate, the discretisation cost scales linearly in
time (cfr. [Yi21], [AnCostaBerry25])
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Open questions

▶ Other operations / unitaries?

▶ Different paths of Hamiltonians?

▶ Integrators other than Poisson processes (e.g. noise)
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