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Computational aspects of the trace norm contraction coefficient

Sending a classical bit through a channel

Optimal Channel Coding: Given a noise model, how to compute
the best encoding of information?



Computational aspects of the trace norm contraction coefficient

Sending a classical bit through a channel

Optimal Channel Coding: Given a noise model, how to compute
the best encoding of information?
Noise: Channel ¢ : L(C") — L(C™).
Messages: @ Classical: i € [k] = {1,..., k} Focus of this
work
o Quantum: p € £L(CK), p>0, tr(p) = 1. (Work
in progress...)
Reduces to: Compute Pguec(®P, k), the maximum probability of
success for transmitting k messages.

Definition

k
Puyee(P, k) = (M;®(p; 1
(@ k)= Z (b)) @)
{pieD(H)1<i<ky =1




Computational aspects of the trace norm contraction coefficient

Special case: Classical channels.

Theorem ([BF17])

When & is classical:
o Easy to approximate Pgc.(P, k) up to (1 — e 1).
@ NP-hard to do better.
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Encoding of a single bit

We focus on encoding a bit, i.e. kK =2.
° Psucc(¢72) = % + %ntr(q)). with

[#(p) — ®(9)l1

po€D(H)  |lp—a1
pFo

Ner(P) =

@ Quantifies the data-processing inequality

o Contraction coefficients well-studied for many information
measures [Geo+25; HT24]...
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Main results

Theorem 1 @ It is NP-hard to approximate 7, (®) to a factor
1/\@—# ¢ for any € > 0, even when & is unital.
o If ® has classical output, the contraction
coefficient is NP-hard to approximate to a factor

\/2/m + € for any € > 0.
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Main results

Theorem 1 @ It is NP-hard to approximate 7, (®) to a factor
1/\@—# ¢ for any € > 0, even when & is unital.
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Theorem 2 NP-complete to distinguish between 7, (®) = 1 and
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Main results

Theorem 1 @ It is NP-hard to approximate 7, (®) to a factor
1/\@—# ¢ for any € > 0, even when & is unital.
o If ® has classical output, the contraction
coefficient is NP-hard to approximate to a factor
2/m + ¢ for any € > 0.
Theorem 2 NP-complete to distinguish between 7, (®) = 1 and
(@) <1 Q).

Theorem 3 There is a family SDP,, of size n9(™ such that

poly(n)
T

0 < SDP .y, — ner(®) <
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Proof Thm. 1 — ® with Classical output

Theorem (Little Grothendieck Problem)
Input: A linear function f : R" — R".
Objective: Compute [|f|l2—1 = sup{[|f(x)l1 | [[x[[2 < 1}.
Hardness: NP-hard to approximate [BRS15; NRV13]
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Proof Thm. 1 — ® with Classical output

Theorem (Little Grothendieck Problem)
Input: A linear function f : R" — R".
Objective: Compute |[fl21 = sup{|F()ll1 | lix]l2 < 1}.
Hardness: NP-hard to approximate [BRS15; NRV13]

Reduction sketch:
@ For any channel ®,
e (P) = % maXx*:X,HXHooSl()‘max — Amin) (®*(X)).
o Note that || f[la—1 = supjy <1 IF*(¥)l2-
o Choose ®*(y) = f*(y)e” 4+ ef*(y)" with e L f*(y).
o Finally supy«_y | y|<1(Amax = Amin)(®*(Y)) =
4B supjy o<1 1 (¥)ll2-
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Proof Thm. 2

Outlook: 7 (®) =1 <= J(®* o ®) separable. Show that SEP is
hard on instances of the form J(®* o ).

Core idea: Reduce Graph 2-CSP problem to the problem of
deciding whether J(®* o ®) is separable.
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The QMA5(2, a, b) complexity class

Definition (QMA}o¢(2, a, b))

(L, L) is in QMAj0(2, a, b) if there is a polynomial p(m) and a
polynomial-time classical verification algorithm V' that on input x
of length m prepares a quantum circuit V(x) acting on O(log m)
qubits such that for any m and any instance of size m, we have

o If x € L, there are u,v € CP(m) unit vectors such that
tr(Myuu™ @ w*) > a

where Ty, is the acceptance projector of V(x).

e If x € L, for any unit vectors u, v € CP(™ we have

tr(Myuu* @ w*) < b.
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The reduction

o Graph 2-CSP is in QMA,g(2,1,1 — 1) [GNN12].

@ For G instance of 2-CSP, take 1 the acceptance projector of
the quantum verifier [BT09; GNN12].

@ G accepting equivalent to [1 separable.

o Let S = vec !(ker(IM)) and 5= <50* g)

o SL= Go the quantum confusability graph of ® with
Go = Span{K;'K; | 1 < i,j < O(n®)}.

° Ny(P) =1« Juv* € Gé < Gg has indep. number >
2 [Dua09].

o [ separable < Juv* € = Gqf Sn(P)=1<
J(®* o ®) separable.
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SDP hierarchy converging to Pgyc.(P, k).

Theorem 3 proven using [Ber+21] for separability with linear
constraints.
Remark:

@ The size of our SDP hierarchy grows exponentialy with the
level.

@ Quantum Doeblin Coefficient give efficient bounds (but not as
tight) [Hir24; Geo+25]
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) for i € {1,2,3}
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p

Upper bound on 7 (D
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Figure: Upper bounds on the contraction coefficient of (multiple copies
of) depolarizing channels obtained via the first level of the hierarchy we
propose.
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Conclusion

NP-hardness of:

@ Approximate the trace norm contraction coefficient

@ Find optimal encoding of a bit

@ Decide if a quantum graph has independence number > 2
Future work:

@ Approximation algorithm based on separability results?

@ Better algorithm if & is structured?

e Encoding of a qubit (work in progress...)
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