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Computational aspects of the trace norm contraction coefficient

Sending a classical bit through a channel

Optimal Channel Coding: Given a noise model, how to compute
the best encoding of information?

Noise: Channel Φ : L(Cn) → L(Cm).

Messages: Classical: i ∈ [k] := {1, . . . , k} Focus of this
work
Quantum: ρ ∈ L(C k), ρ ≥ 0, tr(ρ) = 1. (Work
in progress...)

Reduces to: Compute Psucc(Φ, k), the maximum probability of
success for transmitting k messages.

Definition

Psucc(Φ, k) := max
{Mi |1≤i≤k} POVM,
{ρi∈D(H)|1≤i≤k}

1

k

k∑
i=1

tr(MiΦ(ρi )). (1)
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Special case: Classical channels.

Theorem ([BF17])

When Φ is classical:

Easy to approximate Psucc(Φ, k) up to (1− e−1).

NP-hard to do better.
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Encoding of a single bit

We focus on encoding a bit, i.e. k = 2.

Psucc(Φ, 2) =
1
2 + 1

2ηtr(Φ), with

ηtr(Φ) := max
ρ,σ∈D(H)

ρ̸=σ

∥Φ(ρ)− Φ(σ)∥1
∥ρ− σ∥1

Quantifies the data-processing inequality

Contraction coefficients well-studied for many information
measures [Geo+25; HT24]...
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Main results

Theorem 1 It is NP-hard to approximate ηtr(Φ) to a factor
1/

√
2 + ε for any ε > 0, even when Φ is unital.

If Φ has classical output, the contraction
coefficient is NP-hard to approximate to a factor√

2/π + ε for any ε > 0.

Theorem 2 NP-complete to distinguish between ηtr(Φ) = 1 and
ηtr(Φ) ≤ 1− Ω( 1

n3
).

Theorem 3 There is a family SDPm of size nO(m) such that

0 ≤ SDPm − ηtr(Φ) ≤
poly(n)√

m
.
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Proof Thm. 1 – Φ with Classical output

Theorem (Little Grothendieck Problem)

Input: A linear function f : Rn → Rn.

Objective: Compute ∥f ∥2→1 = sup{∥f (x)∥1 | ∥x∥2 ≤ 1}.
Hardness: NP-hard to approximate [BRS15; NRV13]

Reduction sketch:

For any channel Φ,
ηtr(Φ) =

1
2 maxX∗=X ,∥X∥∞≤1(λmax − λmin)(Φ

∗(X )).

Note that ∥f ∥2→1 = sup∥y∥∞≤1 ∥f ∗(y)∥2.
Choose Φ∗(y) = f ∗(y)eT + ef ∗(y)T with e ⊥ f ∗(y).

Finally supY ∗=Y ,∥Y ∥∞≤1(λmax − λmin)(Φ
∗(Y )) =

4β sup∥y∥∞≤1 ∥f ∗(y)∥2.
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Proof Thm. 2

Outlook: ηtr(Φ) = 1 ⇐⇒ J(Φ∗ ◦ Φ) separable. Show that SEP is
hard on instances of the form J(Φ∗ ◦ Φ).
Core idea: Reduce Graph 2-CSP problem to the problem of
deciding whether J(Φ∗ ◦ Φ) is separable.
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The QMAlog(2, a, b) complexity class

Definition (QMAlog(2, a, b))

(L, L) is in QMAlog(2, a, b) if there is a polynomial p(m) and a
polynomial-time classical verification algorithm V that on input x
of length m prepares a quantum circuit V(x) acting on O(logm)
qubits such that for any m and any instance of size m, we have

If x ∈ L, there are u, v ∈ Cp(m) unit vectors such that

tr(ΠV(x)uu
∗ ⊗ vv∗) ≥ a

where ΠV(x) is the acceptance projector of V(x).
If x ∈ L, for any unit vectors u, v ∈ Cp(m), we have

tr(ΠV(x)uu
∗ ⊗ vv∗) ≤ b.
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The reduction

Graph 2-CSP is in QMAlog(2, 1, 1− 1
n ) [GNN12].

For G instance of 2-CSP, take Π the acceptance projector of
the quantum verifier [BT09; GNN12].

G accepting equivalent to Π separable.

Let S = vec−1(ker(Π)) and Ŝ =

(
0 S
S∗ 0

)
.

Ŝ⊥ = GΦ the quantum confusability graph of Φ with

GΦ := Span{K ∗
i Kj | 1 ≤ i , j ≤ O(n2)}.

ηtr(Φ) = 1 ⇔ ∃uv∗ ∈ G⊥
Φ ⇔ GΦ has indep. number ≥

2 [Dua09].

Π separable ⇔ ∃uv∗ ∈ Ŝ = G⊥
Φ ⇔ ηtr(Φ) = 1 ⇔

J(Φ∗ ◦ Φ) separable.
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SDP hierarchy converging to Psucc(Φ, k).

Theorem 3 proven using [Ber+21] for separability with linear
constraints.
Remark:

The size of our SDP hierarchy grows exponentialy with the
level.

Quantum Doeblin Coefficient give efficient bounds (but not as
tight) [Hir24; Geo+25]
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Figure: Upper bounds on the contraction coefficient of (multiple copies
of) depolarizing channels obtained via the first level of the hierarchy we
propose.
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Conclusion

NP-hardness of:

Approximate the trace norm contraction coefficient

Find optimal encoding of a bit

Decide if a quantum graph has independence number ≥ 2

Future work:

Approximation algorithm based on separability results?

Better algorithm if Φ is structured?

Encoding of a qubit (work in progress...)
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