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Introduction – Bell’s Experiment

Alice Bob

QX Yq2q1

Question: What is Pr(Alice = 0,Bob = 0 | X = 1,Y = 0)?

General Problem: Taking a quantum system, what is the probability of
obtaining a given measurement?
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Classical case – Bayesian Networks

DrySeason

Sprinkler Rain

WetGrass TrafficJam

A

B C

D E

A Pr(A)

t 0.6
f 0.4

C B D Pr(D|B,C)

t t t 0.99
t t f 0.01

t f t 0.7
t f f 0.3

f t t 0.9
f t f 0.1

f f t 0.01
f f f 0.99

A B Pr(B|A)
t t 0.8
t f 0.2
f t 0.1
f f 0.9

A C Pr(C|A)
t t 0.2
t f 0.8
f t 0.75
f f 0.25

C E Pr(E|C)

t t 0.7
t f 0.3

f t 0.1
f f 0.9
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Quantum Bayesian Networks

Definition: Quantum Bayesian Networks [HLP14]

DAG with a quantum instrument per node such that composing these
instruments yields a probability distribution.

Alice Bob

QX Yq2q1

Q = Preparation of the entangled q1 and q2
Alice = Measure on q1 parameterized by the value of X
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Limits

Problems: two wished results we do not have

Compositionality: Given a decomposition of a network, is the data of
the full network obtained from the data of each part?
−→ a big advantage of a graphical syntax, and a main property of
Bayesian networks

Modularity: Given two parts, can they compose to give a network?
−→ the result must be a DAG

Our contributions:
Solutions for these two problems, by giving another presentation of
Quantum Bayesian Networks
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Compositionality Limit

Q1

Q2

X

ϕQ1 : C → H1 ⊗ H2

ϕQ2 : H2 → H3

ϕX (x) : H1 ⊗ H3 → C

Whole graph:

ϕQ1,Q2,X (x) : C → C
= ϕX (x) ◦ (idH1 ⊗ ϕQ2) ◦ ϕQ1

ϕQ1,X (x): H3 → H2 ϕQ2 : H2 → H3
=⇒ ϕQ1,X ,Q2(x) cannot simply be the composition of ϕQ1,X (x) and ϕQ2!
(gives either H3 → H3 or H2 → H2)

Idea: Functions do not work well at graph level, matrices would be better
(also in Bayesian networks: factors instead of conditional probabilities)
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Modularity Limit

B

C

A

C

P1

E

D

A

C

D

A

P2

E

D

A

C

D

A

P3

Part P1 waits for input A and outputs C

Parts P2 and P3 wait for input C and output A and D

Question: Is it “legal” to branch P1 to P2? P1 to P3?

−→ P1 ∪ P2 is a QBN but P1 ∪ P3 is not (cycle A → B → C → D → A)

Idea: Inputs & outputs are insufficient, we need a type
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Modularity Limit
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Plan

▶ Compositionality by Quantum Factors

▶ Modularity by Typing
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Quantum Factors
Instead of associating a quantum instrument to a node associate a:

Definition: Quantum Factor
Take random variables X = (X1, . . . ,Xn), and Hilbert spaces
H = (H1, . . . ,Hm). A Quantum Factor on (X,H) is a function ϕ from
Val(X) =

∏n
i=1 Val(Xi ) to positive matrices in

⊗m
j=1 Hj .

Equipped with a product ⊙, such that for ϕ1 and ϕ2 respectively on
(X1,H1) and (X2,H2), ϕ1 ⊙ ϕ2 is on (X1 ∪ X2,H1 ∆ H2).

Only quantum: get ⊗-networks and their contraction
Only classical: get factors from Bayesian networks and their product

quantum instrument → quantum factor: pre-compose by cap

Alice Bob

QX Yq2q1
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Compositionality with quantum factors

Q1

Q2

X

ϕQ1 : C → H1 ⊗ H2

ϕQ2 : H2 → H3

ϕX (x) : H1 ⊗ H3 → C

Whole graph:

ϕQ1,Q2,X (x) : C → C
= ϕX (x) ◦ (idH1 ⊗ ϕQ2) ◦ ϕQ1

ϕQ1,X (x): H3 → H2 ϕQ2 : H2 → H3
=⇒ ϕQ1,X ,Q2(x) cannot simply be the composition of ϕQ1,X (x) and ϕQ2!

More generally, can compute for any order on the nodes!
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Modularity
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Observation: P1 ∪ P2 is a QBN but not P1 ∪ P3

How to ensure two parts always form a QBN?
We add a type = an interface
Could do so by patching QBN and getting yet another new syntax. . .
We prefer to use proof-nets, graphs from linear logic adapted to typing
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Proof-Nets for Quantum Bayesian Networks

Definition: Proof-Net
A graph respecting some graphical criterion and built from:

ax
A⊥ A cutA⊥ A cX− X−

X−

w

N

1
1

⊥
⊥

⊗A B

A⊗ B

`A B

A ` B
. . . . . .

Y−
1 Q−

1 X+

Q
. . . . . .

Y−
1 Q−

1
⊗

i P
+
i

Example

Alice Bob

QX Yq2q1
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Example

boxY boxQ1⊗Q2
Q boxX boxA boxB

cut

cut

`

cut

X+ X−

Q+
1 ⊗ Q+

2 Q−
1 ` Q−

2

Q−
1

Q−
2

Y+ Y−

A+ B+
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Modularity with types
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Observation: P1 ∪ P2 is a QBN but not P1 ∪ P3
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Modularity with types
P1

boxB boxC

cutB+ B−

A− C+

`
A− ` C+

P2

boxE boxD boxA

cut

c

E+ E−

C− D+ A+

⊗

A+ ⊗ C−

P3

boxE boxD boxA

cut

c

E+ E−

cut

c
ax

D+ D− D+

C− A+

`
A+ ` C−

cut

cut

Observation: P1 ∪ P2 is a QBN but not P1 ∪ P3
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Conclusion
Contributions

Compositionality by modifying the semantic:
from quantum instruments to (more general) quantum factors
Modularity by typing in proof-nets:
proof-theoretic approach adding an interface, parts with compatible
interfaces are those giving a QBN

Perspectives
Compositionality can be used to study conditional independence
(no-signaling) between random variables, even with quantum causes
Modularity allows a weak form of higher-order (linear application), can
we do more?
Proof-Nets have rewriting rules (cut-elimination) corresponding to
computations: can they be used to compute efficiently the quantum
factor of the full network? (as in the classical case)
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Thank you for
your attention!
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