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Introduction — Bell’s Experiment

Question: What is Pr(Alice =0,Bob=0| X =1,Y =0)?
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Introduction — Bell’s Experiment

Question: What is Pr(Alice =0,Bob=0| X =1,Y =0)?

General Problem: Taking a quantum system, what is the probability of
obtaining a given measurement?
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Classical case — Bayesian Networks
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Quantum Bayesian Networks

Definition: Quantum Bayesian Networks [HLP14]

DAG with a quantum instrument per node such that composing these
instruments yields a probability distribution.

@ = Preparation of the entangled q1 and q»
Alice = Measure on g1 parameterized by the value of X

4/14



Limits
Problems: two wished results we do not have

o Compositionality: Given a decomposition of a network, is the data of
the full network obtained from the data of each part?
—> a big advantage of a graphical syntax, and a main property of
Bayesian networks

@ Modularity: Given two parts, can they compose to give a network?
— the result must be a DAG

Our contributions:
Solutions for these two problems, by giving another presentation of
Quantum Bayesian Networks
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Compositionality Limit

@ ¢ C - Hi Q@ H,

¢ Hy — Hs

@ ¢X(x) : HL® Hz3 — C

Whole graph:

° (le’QZ’X(x) :C—=C

_ ¢X(X) o (idHl ® ¢Qz) o ¢Q1
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Compositionality Limit

@ ¢ C - Hi Q@ H,

¢9 - Hy — Hs

@ ¢*(x): H1® H3 = C

Whole graph:
° (le’QZ’X(x) C—C
_ ¢X(X) o (idHl ® ¢Qz) o ¢Q1

@QLX(X): Hs — H> (;5(‘)2: H, — Hs
— @%@ (x) cannot simply be the composition of ¢?%(x) and ¢!
(gives either H3 — H3 or Hy — H>)

Idea: Functions do not work well at graph level, matrices would be better
(also in Bayesian networks: factors instead of conditional probabilities)
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Modularity Limit

@ Part P; waits for input A and outputs C
@ Parts P, and P3 wait for input C and output A and D
Question: Is it “legal” to branch P; to P»>? Py to P3?
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Modularity Limit

@ Part P; waits for input A and outputs C
@ Parts P, and P3 wait for input C and output A and D

Question: Is it “legal” to branch P; to P»>? Py to P3?
— P1UPyis a QBN but P; UPs is not (cycle A— B — C — D — A)

Idea: Inputs & outputs are insufficient, we need a type
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Plan

» Compositionality by Quantum Factors

» Modularity by Typing
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Quantum Factors
Instead of associating a quantum instrument to a node associate a:

Definition: Quantum Factor

Take random variables X = (X1, ..., X,), and Hilbert spaces
H = (Hi,...,Hm). A Quantum Factor on (X,H) is a function ¢ from
Val(X) = [}, Val(Xi) to positive matrices in @, H;.

Equipped with a product ®, such that for ¢1 and ¢, respectively on
(X1, Hy) and (X2, Ha), ¢1 ® ¢2is on (X3 UXo, Hy A Hp).

Only quantum: get ®-networks and their contraction
Only classical: get factors from Bayesian networks and their product
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Quantum Factors
Instead of associating a quantum instrument to a node associate a:

Definition: Quantum Factor

Take random variables X = (X1, ..., X,), and Hilbert spaces
H = (Hi,...,Hm). A Quantum Factor on (X,H) is a function ¢ from
Val(X) = [}, Val(Xi) to positive matrices in @, H;.

Equipped with a product ®, such that for ¢1 and ¢, respectively on
(X1, Hy) and (X2, Ha), ¢1 ® ¢2is on (X3 UXo, Hy A Hp).

Only quantum: get ®-networks and their contraction
Only classical: get factors from Bayesian networks and their product

quantum instrument — quantum factor: pre-compose by cap
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Compositionality with quantum factors

@ (ﬁQlZ(C—>H1®H2

¢9 - Hy — Hs

@ ¢*(x): HL® Hz3 — C

Whole graph:

° P @2X(x): C = C

_ ¢X(X) ° (idHl ® ¢Qz) o ¢Ql

d9X(x): H3 — Ho ¢9: Hy — Hs
— ¢¥1X@(x) cannot simply be the composition of »“*(x) and ¢®2!
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Compositionality with quantum factors

@ ¢% : Hy @ Hy

¢% : Hy @ Hs

@ % Val(X) — Hy ® Hs

Whole graph:

° p X val(X) = C

— gbx @¢Qz ®¢Q1

d9 X Val(X) — H3 @ Ho #9% : Hy @ Hs
_ ¢Ql,X,Qz (X) — G“)Ql-,x 0] ¢Q2

More generally, can compute for any order on the nodes!
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Modularity

Observation: P1 U P> is a QBN but not P; U P3

How to ensure two parts always form a QBN?

We add a type = an interface

Could do so by patching QBN and getting yet another new syntax. ..
We prefer to use proof-nets, graphs from linear logic adapted to typing
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Proof-Nets for Quantum Bayesian Networks

Definition: Proof-Net
A graph respecting some graphical criterion and built from:

XU )x- w 1 L

AlraXTA ALLcutJ | X— ‘

Ay e Al s % @
A® B \A??B Yo Xt Yo ®; P

Example
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Proof-Nets for Quantum Bayesian Networks

Definition: Proof-Net
A graph respecting some graphical criterion and built from:

x-Uedx- w1 L

AL A AL e A X~ v 1L

ALy Je Al s % ﬁ
A® B \A’S’B a Xt Yy X; P

Example
’boxy ‘ ’bonl@QH ’boxX ‘ ’boxA ‘ ’boxB ‘
tAglcutAA:J ‘A+'_, ‘B*’
Q\_ %
Qt ® Q; Qr BQy ‘
v+ cut v
cut
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Modularity with types

Observation: P1 U P> is a QBN but not P; U P3

13/14



Modularity with types

2

P1 P
box| | box!
BY cut B~ \\ C /
g < EV cu £ ‘

t

Ps3
boxf boxP box”
L T J ax
E* E- c
cut +
“ elog, o) A WD

Observation: P1 U P> is a QBN but not P; U P3
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Modularity with types

P1 P2
box®| [ box!
+ _
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P3
boxf boxP box”
./ ax
ET cut £ ‘ ¢ D+
_|p+ -
¢ i')cut’fU A*
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Observation: P1 U P> is a QBN but not P; U P3
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Modularity with types
P1
box®|  [box
B cut B~ \\ c J
‘A7 / C+ E+ cut E” ‘
N . - A+

A= CH

cut

Observation: P1 U P> is a QBN but not P; U P3
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Modularity with types

P1 P2
boxP|  [box
7B+ cut B~ n \\ c J
‘A ‘ ¢ EV cut E- ‘
\\7%77 5 / c-| Dt At
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Ps3
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¢ Pcutm A*
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e
AT R C
X

Observation: P1 U P> is a QBN but not P; U P3
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Conclusion

Contributions
@ Compositionality by modifying the semantic:
from quantum instruments to (more general) quantum factors
@ Modularity by typing in proof-nets:
proof-theoretic approach adding an interface, parts with compatible
interfaces are those giving a QBN
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Conclusion

Contributions
@ Compositionality by modifying the semantic:
from quantum instruments to (more general) quantum factors
@ Modularity by typing in proof-nets:
proof-theoretic approach adding an interface, parts with compatible
interfaces are those giving a QBN

Perspectives
@ Compositionality can be used to study conditional independence
(no-signaling) between random variables, even with quantum causes
@ Modularity allows a weak form of higher-order (linear application), can
we do more?

@ Proof-Nets have rewriting rules (cut-elimination) corresponding to
computations: can they be used to compute efficiently the quantum
factor of the full network? (as in the classical case)
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Thank you for
your attention!
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