Comparative study of quantum optimization
methods for train crew scheduling

Jules Duhamel — EPFL and SNCF
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Goal:

We want to associate train crews to train trips in a way that
minimizes the operational costs.
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This is the step that we are working on
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Operational traduction of the goal

We need to create « chains » of trips, that we will attribute to train crews. We must minimize:

- Taxi usage between two distant trips
- Hotel usage at the end of service of a crew
- Long waiting times that are avoidable between two successive trips.
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Penalty based methods

QUBO formulation of the problem:

Main binary variables: r =1 o

Ty, = 1 iff a driver from u takes v directly trip u
®

Yuww = 1 iff a chain starts with © and ends with v Y®

N

The nodes represent trips, not stations
The edges represent possible connexions, not trips
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Penalty based methods

QUBO formulation of the problem:

Main binary variables: r =1 o

Ty, = 1 iff a driver from u takes v directly trip u
®

Yuww = 1 iff a chain starts with © and ends with v Y®

\ /'r 't\'
Cost function: o, @ y

Z vauv‘l_ch Z Huvyuv

(u,v)elU (u,v)eV
Encode waiting times Encode hotel costs
and taxi costs between for a chain fromuandv 5 @
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Penalty based methods

QUBO formulation of the problem:

Z W’uvxuv—'_ch Z Hu'vyuv

(u,0)€U (u,v)eV

Yuwv variables have a non trivial dependence on Zuv variables.
This is the reason why we need penalty terms.

Example: Penalty term that imposes a set of chains structure:

2 2
Pehaing = Achains (Z (Su + Z Toyu — 1) + Z (eu + Z Loy — 1) )
ucT vCT|(vu)cl ucT veT|(u,w)ecl

& There are many more necessary penalty terms to conciliate x and y variables.
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Method 1: Quantum annealing

1) The cost function is translated to the problem Hamiltonian:

= Z WaioTuw + Cp Z HouwYuw +Z’P — Hl — thﬁf + ZJE-?&?&;
i

(u,v)elU (u,w)eVv i<j

2) The system is prepared in the ground state of a simple Hamiltonian:
T
=1
3) Adiabatic transformation from HO to H1:
H(t) = A(t)Hy + B(t)H,

Under the adiabatic condition, the system remains in the ground state. At the end of the annealing,
the system should be in the ground state of the problem Hamiltonian H1, which encodes the optimal

solution.
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10 most likely states probabilities
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(a) Classical simulation of quantum annealing
for a database of 2 trips, after pre treatment
(from 10 to 3 qubits). The optimal solution
dominates by far with a probability of 97%.
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Quantum Annealing Results

10 most likely states probabilities
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(b) Classical simulation of quantum annealing for
a database of 3 trips, after pre treatment (from 22
to 15 qubits). The valid solutions dominate the in-
valid ones, and the least expensive solutions are ef-
fectively the most likely to be measured.

Only valid solutions emerge. This proves
that the QUBO used behaves as expected.

However, even for 3 trips, the energy gaps
between feasible solutions are small, which
makes it hard to discriminate high cost
feasible solutions.

This suggests that QA might not be suitable
for real size problems.
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Method 2: QAOA

QAOA prepares a parameterized quantum state whose amplitudes are biased toward low-cost
solutions of our problem.

|[]> ::Ei:: T | z”?éw \\\\\x
10) _E'_ Tt ] A ~_ | Classical Optimizer :
e Mt ¢ B Huix e pHpob ¢~ By Humix — Estimate (H(f))
|0> F ] | /74 — = R,
— / Update 7Y }3
0) — H| e = -

............................................................................................

Where H_prob is the problem Hamiltonian (Ising).

The problem unitary e b encodes the cost function.
The mixer unitary e *#Hmix enables transitions between bitstrings.
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QAOA Results

With a depth of p=3, the expected energy after optimization is far from the optimal energy.

QAOA results for 3 trips

600 1 —— <H=>

——— Best <H> so far
400 = = Real optimal energy

-  QAOA falls to a local minimum at around <H> = -700 for
this 3 trips instance.

200 A

- However, all feasible solutions lie at around E = -2800.

Energy (a.u.)

—200 A

- COBYLA fails to even find feasible solutions

—400 A

—600 -

- It suggests that feasible solutions are very isolated.

T T T T
20 40 00 80
QAOA iterations

Conclusion: We have a working QUBO that penalizes unfeasible solutions, but the methods
using it do not perform well.
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Why are penalty based methods not suited for this
problem?

Fraction of feasible solutions in the explored space

. - The ratio of feasible solutions over the
1075 - total number of solutions is more than
107 exponentially low: By /v2N?.
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10—138_
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number of trips

By if the Nth Bell number, or the number of feasible solutions for N trips.
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Why are penalty based methods not suited for this
problem?

Fraction of feasible solutions in the explored space

- The ratio of feasible solutions over the
total number of solutions is more than

exponentially low: By /v2N?.
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- The algorithms will focus on finding a
feasible solution (and fail) rather than
finding a near optimal one.
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By if the Nth Bell number, or the number of feasible solutions for N trips.
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Why are penalty based methods not suited for this
problem?

Fraction of feasible solutions in the explored space

- The ratio of feasible solutions over the
total number of solutions is more than

exponentially low: By /v2N?.

1078 -
10-34 4
10750 -
10786 -

10—112 _

- The algorithms will focus on finding a
feasible solution (and fail) rather than
finding a near optimal one.

10-138 -
10—154 -

10—190 4

0 5 10 15 20 25 30 35 40
number of trips

By if the Nth Bell number, or the number of feasible solutions for N trips.

-> We need to find a way to explore only the subspace of feasible solutions.
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State preparation on feasible solutions

1) Restriction to feasible graphs: 2) We compute the reachability

variables Rij
succ; |0) X 5 X . |¢> R.. w
Lij 2J g
s S S G
L 0) H e
3) We compute the need for hotels for
each solution anc |0) N
> Usestri Ubotel |
R’I,j w> ® p 10) _'L restrict ote |
suce; [) —{x X} v —— [Pras]
A:/Z reach
pred; ) —{xX}-+-{x}- o= — [t
Yy 0) —# o
Yij  |0) <>
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State preparation on feasible solutions

We obtain the following state: | |Peas) = Y ¢ |2) ® [y(z))

rc&feas

Pros:

Only feasible solutions can be measured.

Cons:

Most methods, such as QAOA or QA, can hardly use this
state preparation (we must find other algorithms).
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Variational Quantum Eigensolver (VQE)

- VQE aims to minimize the expected cost of the measured solutions.

- By replacing H gates by Ry(6) gates, we can control how the
amplitude of some components are changed, and therefore try to
amplify the near optimal and optimal components.

0)
0) Classical Optimizer :
Estimate (H(é.)) -----
: Update 6 !
|()> E f;'

______________________________________________
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Variational Quantum Eigensolver (VQE)

—

- Uras(0) becomes a parametrized sampler of feasible solutions.

- @ is updated at each step by a classical optimizer.

0)
0) Classical Optimizer :
: Estimate (H (5))
: Update 6
0)
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VQE Results

- Example for 8 trips:
VQE CVaR simulation for 8 trips

= CVaR 5% for RW

50 A = (CVaR 5% for SPSA

= (CVaR 5% for COBYLA
== True minimum: 17

For 8 trips, there are 4140 feasible solutions.

50 shots are used to estimate <H>.

CVaR 5%
w
]

The random walk (RW) reaches the optimal

30 1 solution the fastest (at 50 iterations, the

> | optimal solution is measured about half of
the time).

20 -

VQE iteration
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VQE Results

Optimal graph, with a cost of 17:
- no taxi or hotel needed
- minimal waiting
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Needed qubits for each method

10° -

Number of qubits
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Conclusion

Penalty based methods VQE CVaR
(QAOA, QA)
Feasible solutions low 100%

ratio

Near optimal
solutions:

almost never

good for tested
problem sizes
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- Penalty based methods imply exploring a space where non feasible solutions dominate feasible solutions.

- Building a state preparation that prevents non feasible solutions allowed us to explore feasible solutions
much more efficiently with VQE in the spirit of a QAOA mixer.

- However, it is not testable on current quantum computers.
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