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Motivation: Why Study Causality?

Everyday causality:

Clouds cause rain

Rain causes traffic delays

Strikes cause traffic delays

Key question:
Can we represent these relationships formally?

Clouds

Rain Strikes

Traffic

Goal

Develop a mathematical framework to represent and analyze causal relationships.
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Causal Structures: Directed Acyclic Graphs (DAGs)

Definition

A causal structure (or DAG) is a directed acyclic graph where:

Nodes represent variables (events, measurements)

Directed edges represent possible direct causal influences

No cycles (acyclic): cannot return back to the same node following a (directed) path
formed by directed edges.

Two types of nodes:

Observed (triangles): We can measure
these variables

Latent (circles): Hidden, unobserved
variables

Λ

A B
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The Causal Markov Condition

How do causal structures constrain probability distributions?

Causal Markov Condition

A probability distribution P(X1, . . . ,Xn) is classically compatible with a DAG iff it factorizes
as:

P(x1, . . . , xn) =
n∏

i=1

P(xi | parents(Xi )).

Interpretation: Each variable is independent of its indirect causes and non-causes
(non-descendants) given its direct causes (parents).

Simple Example

For Clouds → Rain → Traffic:

P(clouds, rain, traffic) = P(clouds) · P(rain | clouds) · P(traffic | rain).
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d-separation: Reading Off Independencies

The DAG structure tells us which variables are independent!

d-separation

A graphical criterion to determine conditional independencies from the DAG structure alone.

Example:

A C

D

B

Independencies:

A ⊥ B | C
(Given C , A and B are independent)

A ⊥ D | C
But A ̸⊥ B unconditionally

Key insight: The graph structure determines which correlations are possible.
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Classical vs. Quantum: What’s the Difference?

Different theories allow different types of correlations!

Classical Theory:

Latent nodes = random variables

Observed nodes = random variables

Joint distribution satisfies Causal
Markov condition

Set of allowed distributions: C

Quantum Theory:

Latent nodes = quantum states

Observed nodes = quantum
measurements (POVMs)

Joint distribution obtainable from the
Born Rule

Set of allowed distributions: Q

The hierarchy of the possible sets of distributions

C ⊆ Q ⊆ G ⊆ I

where G = set of correlations obtainable in any Generalised Probabilistic Theory, I = set of
correlations satisfying only the observed conditional independences (weakest constraints).
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Classical vs. Quantum in arbitrary causal structures

Central Question

For which causal structures is C ⊊ Q? (Classical-quantum gap?)

An easier question

For which causal structures is C ⊂ I?
Because if C = I then trivially C = Q.
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Bell’s Theorem: The First Classical-Quantum Gap (C-Q gap)

Bell (1964): Quantum mechanics violates Local Causality (under the assumption of
measurement independence)

ΛX Y

BA

Figure: The Bell DAG

Classical factorization:

P(a, b, x , y) =
∑
λ

Q(a|x , λ)Q(b|y , λ)Q(x)Q(y)Q(λ).

This is local causality.

Bell’s Result

Classical distributions (where sources are hidden variables) satisfying this must obey Bell
inequalities. But quantum mechanics can violate them! Hence C ⊊ Q for the Bell DAG.
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What are Classical and Quantum distributions in the Bell Causal
Structure: An example for sets C and Q

ΛX Y

BA

Figure: The Bell DAG

By Bell’s theorem C ⊂ Q and

therefore there is a

Classical-Quantum gap in the

Bell DAG.

The set of Classically compatible distributions is:

C =

{
P(a, b, x , y) : P(a, b, x , y) =

∑
λ

Q(a | x , λ)Q(b | y , λ)Q(x)Q(y)Q(λ)

}

The set of Quantum Mechanically compatible distributions
is:

C =

{
P(a, b, x , y) : P(a, b, x , y) =

Tr
(
ρAB EA

x ⊗ EB
y

)
P(x)P(y)

}
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Beyond Bell: Which Other Structures Have a C-Q Gap?

Are there other causal structures with classical-quantum gaps?

Fritz (2012): Triangle scenario has a gap
HLP (2014): Classified 366,565 causal structures with ≤ 6 nodes

Showed 366,565 − 21 (modulo redundancies) structures have no C-Q gap
Left 21 candidates that could have a C-Q gap

Prior to this work

Known gaps: Bell, Instrumental, Triangle, Unrelated Confounders (special names given to
certain causal structures)
Progress: Following the technique of Fritz, 16 more shown by Fox et al. (upcoming)
Remaining: Only 1 open case for ≤ 6 nodes (our focus!)

Our Contribution

We resolve the last open case, completing the classification for all causal structures with ≤ 6
nodes!
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The Remaining Open Case: G1

Causal structure G1:

BA C

DF

E

Figure: The causal structure G1 that is the focus
of this work.

Challenge:

2 latent nodes: A, B

4 observed nodes: C , D, E , F

Complex connectivity

Standard techniques don’t work

Question:
Does G1 support quantum correlations that
cannot be realized classically?

Our Main Theorem

Yes! There exist quantum correlations compatible with G1 that have no classical explanation
within G1.
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Our Strategy: Imposing Additional Conditions

Key insight: Consider a restricted subset of correlations

Additional Conditions
1 Variable splitting: Let F = (FO ,FS) where FS = E always

2 Independence: Let E be independent of C and D in the observed distribution, i.e.,
P(e|cd) = P(e)

What do these conditions achieve?

Force E to be determined entirely by A (not influenced by C or D)
Effectively “turn off” the causal links C → E and D → E
Make E independent of B (the most important part)
Create a Bell-like structure hidden within G1!

Strategy

1 Show: Classical + Conditions 1,2 ⇒ Bell’s local causality

2 Construct: Quantum correlations violating this (using entanglement)
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Classical Compatibility with G1

What does it mean for correlations to be classically compatible with G1?

Definition: Classical Compatibility

P(CDEF ) is classically compatible with G1 if ∃ a joint distribution Q(ABCDEF ) such that:

P(cdef ) =
∑
a,b

Q(abcdef )

where Q(abcdef ) = Q(a)Q(b)Q(c)Q(d |bc)Q(e|acd)Q(f |ab)

Interpretation:

Each term Q(xi |parents(Xi )) reflects direct causal influence

Marginalization over latent variables A, B gives observed distribution
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Quantum Compatibility with G1

In the quantum case, latent nodes are quantum states

Definition: Quantum Compatibility

P(CDEF ) is quantum mechanically compatible with G1 if there exist:

Hilbert spaces HE
A , H

F
A , H

F
B , H

D
B

Quantum states ρA on HE
A ⊗ HF

A and ρB on HF
B ⊗ HD

B

POVMs (measurements):

{K c
d }d on HD

B (for each c)
{Mc,d

e }e on HE
A (for each c , d)

{Nf }f on HF
A ⊗ HF

B

such that:
P(cdef ) = tr

(
(Mc,d

e ⊗ Nf ⊗ K c
d )(ρA ⊗ ρB)

)
P(c)

Key: Node B can hold an entangled state!
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Lemma 1: Classical Case Reduces to Bell Scenario

With our additional conditions, classical correlations must satisfy Bell’s local causality
form

Lemma 1 (Classical + Conditions ⇒ Local Causality)

If P(CDEF ) is classically compatible with G1 and satisfies Conditions 1 and 2, then:

P(cdefO) =
∑
b

Q(b)Q(c)Q(e)Q(d |bc)Q(fO |be).

Key observations:

This is exactly Bell’s local causality
form!

“Settings”: E (determined by A) and C

“Outcomes”: FO and D

Shared common cause: B

Proof approach:

1 Start with classical factorization from G1

2 Apply d-separation relations:
F ⊥ CD|B, E ⊥ B|CD, B ⊥ C

3 Use Conditions 1 and 2 to simplify
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Proof Sketch of Lemma 1 (Part 1)

Step 1: Start with classical compatibility

P(cdef ) =
∑
a,b

Q(abcdef )

=
∑
a,b

Q(b)Q(c |b)Q(d |bc)Q(e|bcd)Q(f |bcde)Q(a|bcdef )

Step 2: Apply d-separation relations from Theorem 1:

F ⊥ CD|B ⇒ Q(f |bcd) = Q(f |b)
E ⊥ B|CD ⇒ Q(e|bcd) = Q(e|cd)
B ⊥ C ⇒ Q(c |b) = Q(c)

This gives:

P(cdef ) =
∑
b

Q(b)Q(c)Q(d |bc)Q(e|cd)Q(f |bcde)
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Proof Sketch of Lemma 1 (Part 2)

Step 3: Apply Condition 2: P(e|cd) = P(e)
Since P(e|cd) =

∑
b Q(b)Q(d |bc)Q(e|cd)/(

∑
b Q(b)Q(d |bc)), we get Q(e|cd) = Q(e)

Step 4: Apply Condition 1: F = (FO ,FS) with FS = E
Replace f with fO fS and sum over fS :

P(cdefO) =
∑
b,fs

Q(b)Q(c)Q(d |bc)Q(e)Q(fO fs |bcde)

Step 5: Simplify using FS = E , F = (FS ,FO) = (E ,FO)
Since Q(efO |bcd) = Q(fO fS |bcd) = Q(f |bcd) = Q(f |b) = Q(e|b)Q(fO |be) = Q(e)Q(fO |be),
(using Q(e|bcd) = Q(e) and Q(e|cd) = Q(e) =⇒ Q(e|b) = Q(e)) we get:

P(cdefO) =
∑
b

Q(b)Q(c)Q(e)Q(d |bc)Q(fO |be)

This is Bell’s local causality form!
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The CHSH Inequality

Bell’s local causality implies testable constraints

CHSH Inequality (Clauser, Horne, Shimony, Holt 1969)

For any distribution of the form P(ab|xy) =
∑

λQ(a|x , λ)Q(b|y , λ)Q(λ):

P(A = B|00) + P(A = B|01) + P(A = B|10) + P(A ̸= B|11) ≤ 3

In our case:

Settings: E and C (binary)
Outcomes: FO and D (binary)
If classical + Conditions 1,2 hold, then:

P(D = FO |00) + P(D = FO |01) + P(D = FO |10) + P(D ̸= FO |11) ≤ 3

Strategy: Construct quantum correlations that violate this!
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Lemma 2: Quantum Violation

Construction using entanglement:

Define |θ⟩ = cos(θ)|0⟩+ sin(θ)|1⟩
1 A: uniformly random classical bit or A = 1

2 |00⟩⟨00|+
1
2 |11⟩⟨11|

2 ρB = |Ψ+⟩⟨Ψ+| where |Ψ+⟩ = 1√
2
(|00⟩+ |11⟩) (maximally entangled!)

3 C : uniformly random classical bit, i.e., P(C = 0) = P(C = 1) = 0.5
4 FS = A, and FO is outcome of measuring HF

B in basis:
{|0⟩, |π/2⟩} if FS = 0
{|π/4⟩, |3π/4⟩} if FS = 1

5 D is outcome of measuring HD
B in basis:

{|π/8⟩, |5π/8⟩} if C = 0
{| − π/8⟩, |3π/8⟩} if C = 1

6 E = A = FS by both E and FS measuring HE
A , H

FS
A in the computational basis {|0⟩, |1⟩}

Result: Standard CHSH calculation gives:

P(D = FO |00) + P(D = FO |01) + P(D = FO |10) + P(D ̸= FO |11) = 4 cos2(π/8) ≈ 3.41

Obtained distribution violates CHSH! ⇒ Classically infeasible in G1
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The Probability Distribution

c e fO d P(cefd)

0 0 0 0 1
8
cos2(π/8) ≈ 0.116

0 0 0 1 1
8
sin2(π/8) ≈ 0.009

0 0 1 0 1
8
sin2(π/8) ≈ 0.009

0 0 1 1 1
8
cos2(π/8) ≈ 0.116

0 1 0 0 1
8
cos2(π/8) ≈ 0.116

0 1 0 1 1
8
sin2(π/8) ≈ 0.009

0 1 1 0 1
8
sin2(π/8) ≈ 0.009

0 1 1 1 1
8
cos2(π/8) ≈ 0.116

1 0 0 0 1
8
cos2(π/8) ≈ 0.116

1 0 0 1 1
8
sin2(π/8) ≈ 0.009

1 0 1 0 1
8
sin2(π/8) ≈ 0.009

1 0 1 1 1
8
cos2(π/8) ≈ 0.116

1 1 0 0 1
8
sin2(π/8) ≈ 0.009

1 1 0 1 1
8
cos2(π/8) ≈ 0.116

1 1 1 0 1
8
cos2(π/8) ≈ 0.116

1 1 1 1 1
8
sin2(π/8) ≈ 0.009

Table: Quantum correlations for G1 violating the corresponding CHSH inequality (omitting fS since
fS = e).
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Summary of Main Result

Theorem (Main Result)

There exist quantum correlations compatible with G1 that cannot be realized classically in G1.

Proof strategy:
1 Impose additional conditions that:

Isolate a Bell-like substructure
Don’t necessarily use all causal links

2 Show classical + conditions ⇒ Bell local causality (Lemma 1)
3 Construct quantum correlations using entanglement that violate CHSH (Lemma 2)
4 Conclude: These quantum correlations have no classical explanation in G1

Application of our strategy

Our method of imposing additional conditions to reveal hidden Bell structures works beyond
G1!
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Application to G2

Causal structure G2:

BA C

DF

E

Figure: G1 = G2 without C → E

Immediate corollary:

Our quantum construction for G1 didn’t
use the link C → E

These same correlations work for G2

Removing an edge adds constraints

Hence, the classical set for G2 ⊂
classical set for G1

Result

G2 also has a classical-quantum gap!
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The Triangle Causal Structure

Triangle structure:

A

B

C

F D

E

Figure: The triangle causal structure.

Fritz’s result (2012):

Showed that the triangle causal
structure has a classical-quantum gap

Used entropy-based arguments to show
this

Our contribution:

Alternative proof at the level of
probabilities using our technique

More direct construction and easier to
follow

Method: Take D = (S1,O1), E = (S ′
1, S

′
2), F = (S2,O2) with S ′

1 = S1 and S ′
2 = S2. Then

classical compatibility reduces to Bell local causality!
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Generalizing the “Fritz Trick”

Our method extends Fritz’s approach:

The General Strategy

1 Identify potential “settings” and “outcomes” in the causal structure
2 Impose conditions that:

Turn off interfering causal paths. If need be consider perfectly correlated bits.
Create independence structure mimicking Bell scenario
Force settings to be independent of the latent common cause of the outputs

3 Prove: Classical + conditions ⇒ local causality form

4 Construct: Quantum violations using entanglement

Key insight: Work at the level of probabilities, not entropies

More direct and easier to follow

Easier to construct explicit quantum violations

Generalizes more naturally
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The Big Picture: All Structures up to 6 Nodes

The journey to complete classification:

Total: 366,565 causal structures with ≤ 6 nodes
HLP (2014): Ruled out 366,544 (no gap possible or any possible gap can be reduced to
the remaining 21)
Remaining: 21 candidates

Resolution of the 21 Cases

Bell (1964): Bell DAG
Fritz (2012): Triangle
Instrumental (2018-19): Instrumental scenario
Unrelated Confounders (2024): Simplest causal network
Fox et al. (upcoming): Following the technique of Fritz, 16 more cases

out of the 21 remaining
This work (2025): G1 (the last case!)

Complete Answer

All 21 candidates have a classical-quantum gap. The remaining 366,544 do not.
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Post-Quantum Correlations

Can we go beyond quantum mechanics?

Hierarchy of Correlation Sets

C ⊆ Q ⊆ G ⊆ I
C: Classical (local hidden variables)

Q: Quantum (entanglement, measurements)

G: Generalised Probabilistic Theories

I: Graph-compatible (respects DAG observed conditional independencies)

Question: Are there structures where Q ⊊ G (post-quantum correlations) such that C ⊆ Q?

Result from our work

For ≤ 6 nodes: No! Every structure with potential of Q ⊊ G also necessarily has C ⊊ Q.
There are no structures with post-quantum but not non-classical quantum correlations.
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Implications and Significance

Why does this matter?

Foundational:

Deeper understanding of causality at the
level of quantum mechanical systems

Shows quantum non-classicality is not
limited to the Bell causal structure

No post-quantum correlations without
non-classical quantum correlations (for
≤ 6 nodes), indicating the same might
be true for larger DAGs

Practical:

Identifying which experiments can
demonstrate quantum advantage

Causal inference with quantum resources

Quantum cryptography beyond standard
settings
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Summary

1 Resolved the last open case: Showed G1 has a classical-quantum gap
2 New methodology: Developed a technique of imposing additional conditions to reveal

hidden Bell structure in other structures
3 Complete classification: All causal structures with ≤ 6 nodes now classified
4 Generalized Fritz’s approach: Applied to multiple structures (G1, G2, Triangle)
5 No post-quantum without quantum: Ruled out intermediate theories for ≤ 6 nodes

Future Directions and Applications

Experimental demonstrations of
quantum violations in different
structures

Causal discovery with quantum data

Quantum network protocols

Device-independent applications

Develop systematic algorithms for
finding quantum violations

Explore connections to other areas
such as machine learning and causal
inference)
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For details, please refer:

1) Chapter 6 in Khanna, S. (2025). Exploring non-classical correlations in causal scenarios (Doctoral
dissertation, University of York).
https://etheses.whiterose.ac.uk/id/eprint/36307/1/PhD_Thesis_Submitted_Version.pdf

2) Khanna, S., Pusey, M., Colbeck, R. (2025). Closing the problem of which causal structures of up
to six total nodes have a classical-quantum gap.
arXiv preprint arXiv:2512.04058
https://arxiv.org/pdf/2512.04058
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Thank You!

Questions?

shashaank.khanna@lis-lab.fr
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Backup: d-separation in Detail

Three types of paths that can be blocked:

Chain:

A W B

A ⊥ B|W

Fork:

A

W

B

A ⊥ B|W

Collider:

A

W

B

A ⊥ B (unconditionally!)
But conditioning on W or
any of its descendants
opens the path
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Backup: Full Classical Factorization for G1

Detailed expansion:
Starting from:

Q(abcdef ) = Q(a)Q(b)Q(c)Q(d |bc)Q(e|acd)Q(f |ab)
Expand using conditional probability:

P(cdef ) =
∑
a,b

Q(abcdef )

=
∑
a,b

Q(b)Q(c |b)Q(d |bc)Q(e|bcd)Q(f |bcde)Q(a|bcdef )

Apply d-separations:

B ⊥ C ⇒ Q(c |b) = Q(c)
E ⊥ B|CD ⇒ Q(e|bcd) = Q(e|cd)
F ⊥ CD|B ⇒ Q(f |bcd) = Q(f |b)

Result:
P(cdef ) =

∑
b

Q(b)Q(c)Q(d |bc)Q(e|cd)Q(f |bcde)
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