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Motivation: Why Study Causality?

Everyday causality:
@ Clouds cause rain

@ Rain causes traffic delays

@ Strikes cause traffic delays a

Key question:
Can we represent these relationships formally?

Develop a mathematical framework to represent and analyze causal relationships.
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Causal Structures: Directed Acyclic Graphs (DAGs)

Definition

A causal structure (or DAG) is a directed acyclic graph where:
o Nodes represent variables (events, measurements)
o Directed edges represent possible direct causal influences

@ No cycles (acyclic): cannot return back to the same node following a (directed) path
formed by directed edges.

Two types of nodes:

e Observed (triangles): We can measure o
these variables

e Latent (circles): Hidden, unobserved A A

variables
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The Causal Markov Condition

How do causal structures constrain probability distributions?

Causal Markov Condition

A probability distribution P(Xi, ..., X,) is classically compatible with a DAG iff it factorizes
as:

P(x1,...,xn) = | [ P(xi | parents(X;)).
i=1

Interpretation: Each variable is independent of its indirect causes and non-causes
(non-descendants) given its direct causes (parents).

Simple Example
For Clouds — Rain — Traffic:

P(clouds, rain, traffic) = P(clouds) - P(rain | clouds) - P(traffic | rain).
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d-separation: Reading Off Independencies

The DAG structure tells us which variables are independent!

d-separation
A graphical criterion to determine conditional independencies from the DAG structure alone.

Example: Independencies:

e ALB|C
A C B (Given C, A and B are independent)

e ALD|C
@ But A Y B unconditionally

Key insight: The graph structure determines which correlations are possible.
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Classical vs. Quantum: What's the Difference?

Different theories allow different types of correlations!

uantum Theory:
Classical Theory: Q y
. @ Latent nodes = quantum states
@ Latent nodes = random variables
@ Observed nodes = quantum

measurements (POVMs)

@ Joint distribution obtainable from the
Born Rule

@ Set of allowed distributions: Q

@ Observed nodes = random variables

@ Joint distribution satisfies Causal
Markov condition

@ Set of allowed distributions: C

The hierarchy of the possible sets of distributions

ccQcgcr

where G = set of correlations obtainable in any Generalised Probabilistic Theory, Z = set of
correlations satisfying only the observed conditional independences (weakest constraints).

= = = ==y
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Classical vs. Quantum in arbitrary causal structures

Central Question

For which causal structures is C C Q7 (Classical-quantum gap?)

An easier question

For which causal structures is C C Z7?
Because if C = Z then trivially C = Q.
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Bell's Theorem: The First Classical-Quantum Gap (C-Q gap)

Bell (1964): Quantum mechanics violates Local Causality (under the assumption of
measurement independence)

A /B

Classical factorization:
P(a, b, x,y) ZQ alx, A)Q(bly, N)Q(x)Q(y)Q(N).

L ® M

Figure: The Bell DAG

This is local causality.

Bell's Result

Classical distributions (where sources are hidden variables) satisfying this must obey Bell
inequalities. But quantum mechanics can violate them! Hence C C Q for the Bell DAG.
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What are Classical and Quantum distributions in the Bell Causal

Structure: An example for sets C and Q

The set of Classically compatible distributions is:

A /B

C= {P(a, b,x,y): P(a,b,x,y) =

Z Qa| x,A) Q(b|y,\) Q(x) Qy) Q(A)}
A ® M 5

The set of Quantum Mechanically compatible distributions
Figure: The Bell DAG is:

By Bell's theorem C C Q and C= {P(a, b,x,y): P(a,b,x,y) =
therefore there is a

Classical-Quantum gap in the A B
Bell DAG. Tr (pas EX' ® E) P(x)P(y)
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Beyond Bell: Which Other Structures Have a C-Q Gap?

Are there other causal structures with classical-quantum gaps?

o Fritz (2012): Triangle scenario has a gap

e HLP (2014): Classified 366,565 causal structures with < 6 nodes
e Showed 366,565 — 21 (modulo redundancies) structures have no C-Q gap
o Left 21 candidates that could have a C-Q gap

Prior to this work

Known gaps: Bell, Instrumental, Triangle, Unrelated Confounders (special names given to
certain causal structures)

Progress: Following the technique of Fritz, 16 more shown by Fox et al. (upcoming)
Remaining: Only 1 open case for < 6 nodes (our focus!)

A

Our Contribution

We resolve the last open case, completing the classification for all causal structures with < 6
nodes!

= = ———
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The Remaining Open Case: Gl

Causal structure G1:

Challenge:
@ 2 latent nodes: A, B
@ 4 observed nodes: C, D, E, F
@ Complex connectivity
@ Standard techniques don't work

Question:
Does G1 support quantum correlations that

Figure: The causal structure G that is the focus  cannot be realized classically?

of this work.

Our Main Theorem
Yes! There exist quantum correlations compatible with G1 that have no classical explanation

within G1.
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Our Strategy: Imposing Additional Conditions

Key insight: Consider a restricted subset of correlations

Additional Conditions

@ Variable splitting: Let F = (Fp, Fs) where Fs = E always

@ Independence: Let E be independent of C and D in the observed distribution, i.e.,
P(e|cd) = P(e)

What do these conditions achieve?
@ Force E to be determined entirely by A (not influenced by C or D)
o Effectively “turn off" the causal links C — E and D — E
e Make E independent of B (the most important part)
o Create a Bell-like structure hidden within G1!

Strategy

© Show: Classical + Conditions 1,2 = Bell's local causality

@ Construct: Quantum correlations violating this (using entanglement)

. = == et
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Classical Compatibility with G1

What does it mean for correlations to be classically compatible with G17?

Definition: Classical Compatibility
P(CDEF) is classically compatible with G1 if 3 a joint distribution Q(ABCDEF) such that:

P(cdef) Z Q(abcdef)

a,b

where  Q(abcdef) = Q(a)Q(b)Q(c)Q(d|bc)Q(e|lacd)Q(f|ab)

Interpretation:
e Each term Q(x;|parents(X;)) reflects direct causal influence

@ Marginalization over latent variables A, B gives observed distribution
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Quantum Compatibility with G1

In the quantum case, latent nodes are quantum states

Definition: Quantum Compatibility

P(CDEF) is quantum mechanically compatible with G1 if there exist:
o Hilbert spaces H§, HY, HE, HE
e Quantum states pa on H§ ® H% and pg on HE ® HY
e POVMs (measurements):
o {KS}q on HE (for each c)

o {MS?}, on HE (for each ¢, d)
° {Nf}f on HA: X HE_

such that:

P(cdef) = tr (Mg @ Nr @ K)(pa @ ps) ) P(c)

Key: Node B can hold an entangled state!
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Lemma 1: Classical Case Reduces to Bell Scenario

With our additional conditions, classical correlations must satisfy Bell’s local causality
form

Lemma 1 (Classical + Conditions = Local Causality)

If P(CDEF) is classically compatible with G1 and satisfies Conditions 1 and 2, then:

P(cdefo) = z Q(b)Q()Q(e)Q(d]be) Q(fobe).

Key observations:

. . Proof approach:
@ This is exactly Bell's local causality

@ Start with classical factorization from G1
form!

" - . @ Apply d-separation relations:
o "“Settings”: E (determined by A) and C FLCDIB ELB|CD,BLC
@ "Outcomes”: Fp and D

© Use Conditions 1 and 2 to simplify
@ Shared common cause: B
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Proof Sketch of Lemma 1 (Part 1)

Step 1: Start with classical compatibility

P(cdef) =~ Q(abcdef)
a,b

= Z Q(b)Q(c|b)R(d|bc)Q(e|bcd) Q(f|bede) Q(a|bedef)

a,b

Step 2: Apply d-separation relations from Theorem 1:
e F 1 CD|B = Q(f|bcd) = Q(f|b)
e E L B|CD = Q(e|bcd) = Q(e|cd)
e B1L C= Q(c|b) =Q(c)

This gives:
P(cdef) = ZQ(b)Q Q(d|bc)Q(e|cd)Q(f|bede)
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Proof Sketch of Lemma 1 (Part 2)

Step 3: Apply Condition 2: P(e|cd) = P(e)

Since P(e|cd) =32, Q(b)Q(d|bc)Q(e|cd)/ (32, Q(b)Q(d]bc)), we get Q(efcd) = Q(e)
Step 4: Apply Condition 1: F = (Fp, Fs) with Fs = E

Replace f with fofs and sum over fs:

P(cdefp) = ZQ Q(d|bc)Q(e) Q(fofs| bede)

Step 5: Simplify using Fs = E, F = (Fs, Fo) = (E, Fo)
Since Q(efo|bed) = Q(fofs|bed) = Q(f|bcd) = Q(f|b) = Q(e|b)Q(fo|be) = Q(e)Q(fo|be),
(using Q(e|bcd) = Q(e) and Q(e|cd) = Q(e) = Q(e|b) = Q(e)) we get:

P(cdefo) ZQ Q(e)Q(d|bc)Q(fobe)

This is Bell's local causality form!
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The CHSH Inequality

Bell’s local causality implies testable constraints

CHSH Inequality (Clauser, Horne, Shimony, Holt 1969)

For any distribution of the form P(ab|xy) =, Q(a|x, A\)Q(bly, ) Q(N):

| P(A = B|00) + P(A = B|01) + P(A = B|10) + P(A # BJ11) < 3

In our case:
@ Settings: E and C (binary)
@ Outcomes: Fp and D (binary)
@ If classical + Conditions 1,2 hold, then:

P(D = Fo|00) + P(D = Fol01) + P(D = Fo|10) + P(D # Fo|11) <3

Strategy: Construct quantum correlations that violate this!
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Lemma 2: Quantum Violation

Construction using entanglement:

Define |#) = cos(6)|0) + sin(#)|1)
@ A: uniformly random classical bit or A = £|00)(00| + 3|11)(11]
Q pg = [VH)(WT| where W) = \%(|OO> +|11)) (maximally entangled!)
@ C: uniformly random classical bit, i.e., P(C =0)=P(C=1)=0.5
@ Fs = A, and Fp is outcome of measuring Hg in basis:
o {|0),|x/2)}if Fs =0
o {|n/4),|3n/4)}if Fs=1
@ D is outcome of measuring Hg in basis:
o {|m/8),|57/8)}if C=0
o {|—7/8),|37/8)}if C=1
@ E = A= Fs by both E and Fs measuring H%, HZ_S in the computational basis {|0), |1)}
Result: Standard CHSH calculation gives:

P(D = Fp|00) + P(D = Fp|01) + P(D = Fp|10) + P(D # Fol11) = 4cos2(7r/8) ~ 3.41
Obtained distribution violates CHSH! = Classically infeasible in G1
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Probability Distribution

c e fo d P(cefd)

0 0 0 0| Lcos?(n/8)~0.116
0 0 0 1| zsin?(w/8)=~0.009
0 0 1 o0 ; sin?(m/8) ~ 0.009
0 0 1 1] fcos®(w/8)~0.116
0 1 0 0| zcos?(w/8)~0.116
0 1 0 1| zsin?(w/8)=~0.009
0 1 1 o0 ; sin?(m/8) ~ 0.009
0 1 1 1] %cos?(w/8)~0.116
1 0 0 0| zcos?(n/8)~0.116
1 0 0 1] %sin?(7/8)~0.009
1 0 1 0 ; sin?(7/8) ~ 0.009
1 0 1 1| fcos?(n/8)=~0.116
11 0 O 5 sin?(7/8) = 0.009
1 1 0 1| lcos?(n/8)=0.116
1 1 1 0] :cos’(n/8)~0.116
1 1 1 1] gsin®(x/8)~ 0.009

Table: Quantum correlations for G1 violating the corresponding CHSH inequality (omitting fs since
fe=¢e
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Summary of Main Result

Theorem (Main Result)

There exist quantum correlations compatible with G1 that cannot be realized classically in G1.

Proof strategy:
© Impose additional conditions that:
o Isolate a Bell-like substructure
e Don't necessarily use all causal links

@ Show classical 4 conditions = Bell local causality (Lemma 1)
© Construct quantum correlations using entanglement that violate CHSH (Lemma 2)
@ Conclude: These quantum correlations have no classical explanation in G1

Application of our strategy

Our method of imposing additional conditions to reveal hidden Bell structures works beyond
G1!

= md = ==yt
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Application to G2

Immediate corollary:
Causal structure G2: y

@ Our quantum construction for G1 didn't
use the link C — E

@ These same correlations work for G2

@ Removing an edge adds constraints

@ Hence, the classical set for G2 C
classical set for G1

Figure: G1 = G2 without C — E

G2 also has a classical-quantum gap!
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The Triangle Causal Structure

Triangle structure: Fritz’s result (2012):

@ Showed that the triangle causal
structure has a classical-quantum gap

@ Used entropy-based arguments to show
this
Our contribution:

@ Alternative proof at the level of
probabilities using our technique

@ More direct construction and easier to
follow

Method: Take D = (51, 01), E = (51,55), F = (52, 02) with S = S; and S5 = S,. Then
classical compatibility reduces to Bell local causality!

Figure: The triangle causal structure.
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Generalizing the “Fritz Trick”

Our method extends Fritz's approach:

The General Strategy

@ lIdentify potential “settings” and “outcomes” in the causal structure

@ Impose conditions that:
e Turn off interfering causal paths. If need be consider perfectly correlated bits.
o Create independence structure mimicking Bell scenario
o Force settings to be independent of the latent common cause of the outputs

© Prove: Classical 4 conditions = local causality form

@ Construct: Quantum violations using entanglement

Key insight: Work at the level of probabilities, not entropies
@ More direct and easier to follow
@ Easier to construct explicit quantum violations

@ Generalizes more naturally
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The Big Picture: All Structures up to 6 Nodes

The journey to complete classification:

@ Total: 366,565 causal structures with < 6 nodes

e HLP (2014): Ruled out 366,544 (no gap possible or any possible gap can be reduced to

the remaining 21)
o Remaining: 21 candidates

Resolution of the 21 Cases

Bell (1964): Bell DAG
Fritz (2012): Triangle
Instrumental (2018-19): Instrumental scenario

Unrelated Confounders (2024): Simplest causal network

Fox et al. (upcoming):

out of the 21 remaining

This work (2025): G1 (the last case!)

Following the technique of Fritz, 16 more cases

Shashaank Khanna, Matthe

usey, Roger Colbeck (Closing the Problem of Classical-Quantum Gaps in Causz

January 2026




Post-Quantum Correlations

Can we go beyond quantum mechanics?

Hierarchy of Correlation Sets

CcCcQcgct
@ C: Classical (local hidden variables)

e Q: Quantum (entanglement, measurements)

@ G: Generalised Probabilistic Theories

@ 7: Graph-compatible (respects DAG observed conditional independencies)

Question: Are there structures where @ C G (post-quantum correlations) such that C C Q7?

Result from our work

For < 6 nodes: No! Every structure with potential of Q C G also necessarily has C C Q.
There are no structures with post-quantum but not non-classical quantum correlations.
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Implications and Significance

Why does this matter?

Foundational:

@ Deeper understanding of causality at the
level of quantum mechanical systems

Practical:

o Identifying which experiments can

@ Shows quantum non-classicality is not demonstrate quantum advantage

limited to the Bell causal structure ) .
o Causal inference with quantum resources

@ No post-quantum correlations without
non-classical quantum correlations (for
< 6 nodes), indicating the same might
be true for larger DAGs

@ Quantum cryptography beyond standard
settings
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Summary

© Resolved the last open case: Showed G1 has a classical-quantum gap

@ New methodology: Developed a technique of imposing additional conditions to reveal
hidden Bell structure in other structures

© Complete classification: All causal structures with < 6 nodes now classified

© Generalized Fritz's approach: Applied to multiple structures (G1, G2, Triangle)

© No post-quantum without quantum: Ruled out intermediate theories for < 6 nodes

Future Directions and Applications

@ Experimental demonstrations of
quantum violations in different
structures

@ Develop systematic algorithms for
finding quantum violations

@ Explore connections to other areas
such as machine learning and causal
inference)

o Causal discovery with quantum data

@ Quantum network protocols

@ Device-independent applications
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For details, please refer:

1) Chapter 6 in Khanna, S. (2025). Exploring non-classical correlations in causal scenarios (Doctoral
dissertation, University of York).
https://etheses.whiterose.ac.uk/id/eprint/36307/1/PhD_Thesis_Submitted_Version.pdf

2) Khanna, S., Pusey, M., Colbeck, R. (2025). Closing the problem of which causal structures of up
to six total nodes have a classical-quantum gap.

arXiv preprint arXiv:2512.04058

https://arxiv.org/pdf/2512.04058
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Thank You!

Questions?

shashaank.khanna@lis-lab.fr
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Backup: d-separation in Detail

Three types of paths that can be blocked:

Chain: Fork:

@mg

Al B|W
| Al B|/W

Collider:

A L B (unconditionally!)
But conditioning on W or
any of its descendants
opens the path
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Backup: Full Classical Factorization for G1

Detailed expansion:
Starting from:

Q(abcdef) = Q(a)Q(b)Q(c)Q(d|bc)Q(elacd)Q(f|ab)
Expand using conditional probability:

P(cdef) Z Q(abcdef)

= ZQ Q(c|b)Q(d|bc)Q(e|bcd)Q(f|bcde) Q(albedef)

Apply d-separations:
e B1 C = Qc|b) = Q(c)
e E 1 B|CD = Q(e|bcd) = Q(e|cd)
e F L CD|B = Q(f|bcd) = Q(f|b)
Result:

P(cdef) =~ Q(b)Q(c)Q(d|bc) Q(e|cd) Q(f|bcde)
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