
1© Eviden SAS© Eviden SAS an atos business

From NISQ to Hybrid Computing
With Q-Pragma

Océane KOSKA
PhD student & Engineer at Eviden
2026 - January, 15th and 16th

2© Eviden SAS

Quantum – a new computing paradigm
Introduction

Quantum computing usefulness

Quantum computing promises exponential
speed ups over classical computing for various
tasks

NISQ era
we are here

Hybrid Computing era
use of QC in HPC applications

Improve Quantum Hardware

Understand what a hybrid quantum-
classical application is

3© Eviden SAS

NISQ and Hybrid Programming
NISQ vs HPQC

NISQ (Noisy Intermediate Scale
Quantum) era:

10-100+ qubits

noisy qubits

short term

Demonstrate a quantum advantage –
focus on the pure quantum part

Prototyping programming languages
(e.g., Python) – not HPC ones

Short quantum computation
(to mitigate the impact of noise)

Low availability rate
(calibration, etc.)

HPQC (High Performance
Quantum Computing) era:

~thousands qubits

ideal qubits (with QEC)

Exploit a quantum advantage in HPC
applications

HPC programming languages to
accelerate existing application

Long hybrid computation

High availability rate

4© Eviden SAS

NISQ and Hybrid Programming
NISQ vs HPQC

NISQ (Noisy Intermediate Scale
Quantum) era:

10-100+ qubits

noisy qubits

short term

HPQC (High Performance
Quantum Computing) era:

~thousands qubits

ideal qubits (with QEC)

No communication
during calculation

No quantum
memory persistency

Send task

Get result

Classical control flow over
quantum instruction

NISQ era

Hybrid
computing

5© Eviden SAS

Windowed Quantum arithmetic

used by Shor
in 8 hours

arXiv:1905.07682v1

NISQ Programming and Quantum Error Correction
Quantum Error Correction cannot be implemented using NISQ Frameworks

Circuit formalism (used by most of QC
programming framework)

Does not scale

Are static
(i.e. no interaction)

User friendly

Fast to execute
(preloading)

Job

Not at scale
CPU
QPU

Time

CPU

QPU Syndrome
measurement

Process

Recovery

while an error is detected
QEC

QPU

Controller

Quantum part

Host

H
P

C
 n

o
d

e

Classical part / QEC
Quantum part

6© Eviden SAS

FTQC QPUs and HPC accelerators
Accelerators on a HPC node

GPU programming frameworks
allow dynamic interaction

7© Eviden SAS

Content Overview

Hybrid Computing & HPC
01

Q-Pragma – a C++ framework
02

Q-Pragma – overview of C++
pragmas

03

Hybrid Computing & HPC01

9© Eviden SAS

HPC hardware is already hybrid
Architecture of an hybrid CPU/GPU node

HPC is already hybrid. Some nodes are
extended using GPUs

The Host is directly connected to the GPU
using an HPC link (like PCI express)

Use of programming languages designed
for performances (e.g., C, C++, Fortran)

GPU

Controller

Graphics and
Compute Array

Host

H
P

C
 n

o
d

e

Classical part
GPU specific part

Programming on GPUs
New language Language extension

10© Eviden SAS

Extending a programming language
Using pragmas

// Runs on CPU
uint8_t a, x[SZ], y[SZ];

// Runs on GPU
#pragma omp target map(to:x[0:SZ]) map(tofrom:y[0:SZ])
for (int i = 0; i < SZ; i++) {

y[i] = a * x[i] + y[i];
}

// Runs on CPU
...

// Runs on CPU
uint8_t a;
qpragma::quint_t<8UL> x, y;

// Runs on QPU
#pragma quantum scope
{

y += a * x;
}

// Runs on CPU
...

C++ & Quantum

11© Eviden SAS

Extending a programming language
Using pragmas

// Create a uniform superposition [0:200]
quint8_t quantum_int;
qbool anc;

do {
// Create a uniform superposition[0:255]
reset(quantum_int);
wall::H<8UL>(quantum_int);

#pragma quantum ctrl(quantum_int > 200)
X(anc);

} while (measure_and_reset(anc));

C++ & Quantum

Creating a superposition
0 + 1 +⋯+ |200⟩

Create two quantum registers
One register containing the result & one ancilla

Reset first register (by applying a measure) and
apply a wall of Hadamard gates to get the state
0 + 1 +⋯+ |28 − 1⟩

Apply X gate is “quantum_int > 200”
0 0 + 1 0 +⋯+ 200 0 + 201 1 +⋯+ |255⟩|1⟩

Q-Pragma – a C++ framework02

13© Eviden SAS

Extending C++ with two types of pragmas
Q-Pragma – A C++ framework

Pragmas for quantum computing
exploits the properties of quantum hardware

Pragmas for code locality
kernels and memory management

• #pragma quantum scope
• #pragma quantum move

• #pragma quantum routine
• #pragma quantum ctrl
• #pragma quantum else
• #pragma quantum compute

#pragma quantum scope
{

// Code executed on the QPU
...

// Move a var from Host to Device
#pragma quantum move toDevice(variable)
...

}

Exploit the capabilities of the
quantum device
reversibility, controllability, etc.

What are the capabilities of a
Quantum Programming Framework?

14© Eviden SAS

Quantum capabilities
Q-Pragma – a C++ framework

Code and memory locality

Scalability

Controllability

Typing

Safe uncomputation

Reversibility

Dynamic interaction

15© Eviden SAS

Quantum capabilities are not supported by existing frameworks
Q-Pragma – a C++ framework

16© Eviden SAS

Q-Pragma – Quantum types and C++ pragma directives
Q-Pragma – a C++ framework

Quantum types

• Quantum bool (or qubit) qbool

• Quantum integers quint8_t, qint8_t, …, quint_t<SIZE>, qint_t<SIZE>

• Array of qubits qpragma::array<SIZE>
• …

Quantum pragmas

• Quantum scope #pragma quantum scope [with (…)]

• Quantum move #pragma quantum move [toDevice(…)] [toHost(…)]

• Quantum routine #pragma quantum routine [params]

• Quantum compute #pragma quantum compute

• Quantum ctrl #pragma quantum ctrl (…)

• Quantum else #pragma quantum else

Q-Pragma – Overview of C++ pragmas03

18© Eviden SAS

Q-Pragma – Creating advanced quantum kernels
Example of quantum routine directive

Code example: routine directive

#pragma quantum routine
void bell_pair(const qbool & qb0,

const qbool & qb1) {
H(qb0);
CNOT(qb0, qb1);

}

int main() {
…;
::bell_pair(qb0, qb1);
::bell_pair.dag(qb0, qb1);
::bell_pair.ctrl(qc, qb0, qb1);

}

Definition of a pure quantum kernel.

This kernel is:
• Callable (as any function)
• Reversible
• Controllable

Call different version of bell_pair quantum
kernel

19© Eviden SAS

Q-Pragma – Controlling instructions with a qubit
Example of quantum ctrl directive

Code example: ctrl directive

// Create a uniform superposition [0:200]
quint8_t quantum_int;
qbool anc;

do {
// Create a uniform superposition[0:255]
reset(quantum_int);
wall::H<8UL>(quantum_int);

#pragma quantum ctrl(quantum_int > 200)
X(anc);

} while (measure_and_reset(anc));

Apply X gate if “quantum_int > 200”

20© Eviden SAS

Q-Pragma – Safe uncomputation
Example of quantum compute directive

Code example: compute directive

#pragma quantum routine (double angle)
void RZ_2qb(const qbool & qb1, const qbool & qb2) {

// Define qbool
qbool ancilla;
{

#pragma quantum compute
{ CCNOT(qb1, qb2, ancilla); }

// Apply RZ gate
(RZ(angle))(ancilla);

// Hidden uncompute
}

}

A quantum routine is
a pure quantum
function.
Then, a routine is:

• Callable
(as any function)

• Reversible
• Controllable

Create a parametrized routine

Compute “ancilla” register

Uncompute automatically at
the end of the scope

Reminder

21© Eviden SAS

Q-Pragma – an advanced standard library
Shor algorithm, using Q-Pragma arithmetic operators

Code example Shor algorithm in 10 lines

uint64_t to_divide = …, random_base = …, measurement = 0UL;

#pragma quantum scope with (to_divide, random_base, measurement)
{

qint_t<QSIZE> first_register;
wall::H<QSIZE>(first_register);

qint_t<QSIZE> second_register =
qpragma::pow(random_base, first_register) % to_divide;

reset(second_register);

qft<QSIZE>(first_register);
measurement = measure_and_reset(first_register);

}

© Eviden SAS

Confidential information owned by Eviden SAS, to be used by the recipient only.
This document, or any part of it, may not be reproduced, copied, circulated
and/or distributed nor quoted without prior written approval from Eviden SAS.

Thank you

For more information, please scan:

Papier published in

Science of Computer Programming

Contacts: oceane.koska@eviden.com arnaud.gazda@eviden.com

mailto:oceane.koska@eviden.com
mailto:arnaud.gazda@eviden.com

	Diapositive 1 From NISQ to Hybrid Computing
	Diapositive 2 Quantum – a new computing paradigm
	Diapositive 3 NISQ and Hybrid Programming
	Diapositive 4 NISQ and Hybrid Programming
	Diapositive 5 NISQ Programming and Quantum Error Correction
	Diapositive 6 FTQC QPUs and HPC accelerators
	Diapositive 7 Content Overview
	Diapositive 8
	Diapositive 9 HPC hardware is already hybrid
	Diapositive 10 Extending a programming language
	Diapositive 11 Extending a programming language
	Diapositive 12
	Diapositive 13 Extending C++ with two types of pragmas
	Diapositive 14 Quantum capabilities
	Diapositive 15 Quantum capabilities are not supported by existing frameworks
	Diapositive 16 Q-Pragma – Quantum types and C++ pragma directives
	Diapositive 17
	Diapositive 18 Q-Pragma – Creating advanced quantum kernels
	Diapositive 19 Q-Pragma – Controlling instructions with a qubit
	Diapositive 20 Q-Pragma – Safe uncomputation
	Diapositive 21 Q-Pragma – an advanced standard library
	Diapositive 22 Thank you

