=VIDEN

From NISQ to Hybrid Computing

With Q-Pragma

Océane KOSKA
PhD student & Engineer at Eviden
2026 - January, 15th and 16th © Eviden SAS an atos business

Quantum - a new computing paradigm
Introduction

——)

=

—

&2

<
\>§§<

Quantum computing usefulness

—

;-$

i
Z =

Quantum computing promises exponential
speed ups over classical computing for various

tasks

Hybrid Computing era
use of QC in HPC applications

; Improve Quantum Hardware :

NISQ era Understand what a hybrid quantum-
we are here classical application is

NISQ and Hybrid Programming

NISQ vs HPQC

———

' NISQ (Noisy Intermediate Scale
' Quantum) era:

I3 10-100+ qubits

2| hoisy qubits

@ short term

' HPQC (High Performance
Quantum Computing) era:

f&‘\ ~thousands qubits

ideal qubits (with QEC)

©)

©)

Demonstrate a quantum advantage -

focus on the pure quantum part

</

[]

Prototyping programming languages
(e.g., Python) - not HPC ones

Short quantum computation
(to mitigate the impact of noise)

Low availability rate
(calibration, etc.)

Exploit a quantum advantage in HPC
applications

>

-

HPC programming languages to
accelerate existing application

Long Aybrid computation

High availability rate

© Eviden SAS

O myQLM

S Qiskit

NISQ and Hybrid Programming
NISQ vs HPQC

' NISQ (Noisy Intermediate Scale
 Quantum) era:

I3 10-100+ qubits

| |
| |
- Send task | ' No communication

2| hoisy qubits

| ! " during calculation
= short term NlSQ cra | | Getresult - No quantum
EES - % % memory persistency
HPQC (High Performance
Quantum Computing) era:
Hybrid | | | |
I3 ~thousands qubits computing |

|
Classical control flow over
quantum instruction

ideal qubits (with QEC)

NISQ Programming and Quantum Error Correction
Quantum Error Correction cannot be implemented using NISQ Frameworks

Circuit formalism (used by most of QC

Time

I Quantum part

. programming framework) Host

: 1l :

! % Elml Siml — > 3= | % PU """" I

: @" - = N T : ©) | Q i

: . v S0 Controller i

! \/ User friendly >< Does not scale D Q ; |

! _ O ! . eee®

: Fast to execute Are static v L ; ;

: (preloading) (i.e. no interaction) i : | .

i ! ; ; Classical part / QEC

Windowed Quantum arithmetic

1 | Ry /A
arxXiv:1905.07682v]

' QEC . : |

. while an error is detected ! [

! v | ! —{Ema) i {Ema}— N

! CPU Process i 10y [t Vnry ax] {70k Fog]-{77}-{Clear Uiy e (0 gsed by Shor

! R 1 “ In 8 hours

' Syndrome :

: Qp U 1 Figure 3: Uncomputing a table lookup with address space size L and an output size larger than VL. Has a Toffoli

| measurement 1 count and measurement depth of O(v/L). Quadratically cheaper than computing the table lookup.

1 1

L e e e e e e 1

FTQC QPUs and HPC accelerators

Accelerators on a HPC node

(Host
§ I_O_F_’U _____ 1 ____________ E_G_If’U _____ I ____________ I I |
8 { 5 Controller o Controller B
: ! : < : :
% g | ; . e e
TR | ;

. Device - can be not present in the node

Classical part

I Quantum part .| GPU-specific part

>>> GPU programming frameworks
allow dynamic interaction

=VIDEN

Content Overview

Hybrid Computing & HPC

Q-Pragma — a C++ framework

Q-Pragma - overview of C++
pragmas

DEN

O1 Hybrid Computin

HPC hardware is already hybrid
Architecture of an hybrid CPU/GPU node

HPC is already hybrid. Some nodes are
@ extended using GPUs Host
Q The Host is directly connected to the GPU Q | ptTTotmeopmotoosoomomoomoooeooog
O using an HPC link (like PCI express) _8 GPU
-
Use of programming languages designhed Q Controller
(€ for performances (e.g., C, C++, Fortran) al 000
L :
- Graphicsanad
Programming on GPUs - Compute Array
New language . Language extension :
OpenCL ~ OpenMP

Classical part

GPU specific part

Extending a programming language
Using pragmas

OpenMP

C++ & Quantum

a, x[Sz], y[SZ]; a;

gpragma::quint_ t<8UL> x, vy;

#pragma omp target map(to:x SZ map (tofrom:y SZ
=0; i< SZ; i++) {
a * x[i] + y[i];

#pragma quantum scope

{
¥

i

y += a * Xx;

Extending a programming language
Using pragmas
C++ & Quantum
Creqting a superposition
|0) + |1) + --- + |200)
quint8_t quantum_int;
gbool anc;

do {

reset(quantum_int);
wall::H<8UL>(quantum_int);

#pragma quantum ctrl(quantum_int > 200)
X(anc);
} while (measure _and reset(anc));

=VIDEN

Create two quantum registers
One register containing the result & one ancilla

Reset first register (by applying a measure) and
apply a wall of Hadamard gates to get the state
|0) + [1) + -+ |28 — 1)

Apply X gate is “quantum_int > 200"
|0)]0) + |1)]|0) + --- 4+ |200)|0) + |201)|1) + --- + |255)|1)

© Eviden SAS

DEN

02 Q-Pragma -a C++

Extending C++ with two types of pragmas
Q-Pragma - A C++ framework

#pragma quantum scope

5*} Pragmas for code locality 5
| NV,

kernels and memory management
* #pragma quantum scope ,
* #pragma quantum move #pragma quantum move toDevice(variable

Pragmas for guantum computing @ Exploit the capabilities of the
+ exploits the properties of quantum hardware , quantum device
« #pragma quantum routine reversibility, controllability, etc.
* #pragma quantum ctrl . (?) What are the capabilities of a
 #pragma quantum else § Quantum Programming Framework?

 #pragma quantum compute

Quantum capabilities
Q-Pragma - a C++ framework

@ Code and memory locality

e]:% Scalability

; Reversibility
A Safe uncomputation
T @

=VIDEN

© Eviden SAS

Dynamic interaction

Typing

Controllability

Quantum capabilities are not supported by existing frameworks
Q-Pragma - a C++ framework

v' Fully supported
~ Partially supported

| Framework I Locality | Dynamic interaction | Scalability | Typing | Reversibility | Controllability | Safe uncomputation

Cirq [8] v v

CUDA Quantum [11] ~ v v ~
myQLM [13] v v v ~
OpenQASM 3 [9] v v v v

Project(Q) |33, 18] v v v v ~
QF [30] v ~ v v ~
QCOR |26] ~ v v

Qiskit [31] v v

Quipper [17] v v v
Scaffold [1] v

Silq [5] v v v v
CUDA [30] v v v v

OpenCL [34] v v v v

OpenMP [10, 24| v v v v

Table 1: Features implemented by existing hybrid frameworks - the first group corresponds to quantum frameworks, the second
one corresponds to classical frameworks (see Appendix B for details).

Q-Pragma - Quantum types and C++ pragma directives
Q-Pragma - a C++ framework

Quantum types

« Quantum bool (or qubit) gbool
« Quantum integers quint8 t, gint8 t, .., quint t<SIZE>, qint t<SIZE>

* Array of qu bits gpragma: :array<SIZE>

Quantum pragmas

« Quantum scope #pragma quantum scope [with (..)]

« Quantum move #pragma quantum move [toDevice(..)] [toHost(..)]
« Quantum routine #pragma quantum routine []

« Quantum compute #pragma quantum compute

* Quantum ctrl #pragma quantum ctrl (..)

* Quantum else #pragma quantum else

DEN

03 Q-Pragma -0

Q-Pragma - Creating advanced quantum kernels
Example of quantum routine directive

Code example: routine directive

#pragma quantum routine Definition of a pure quantum kernel.
void bell pair(
This kernel is:

« Callable (as any function)

* Reversible

« Controllable

H(qbe) ;
CNOT(gb@, gbl);

main() A

::bell pair(qbo, gbl);
::bell pair.dag(gb@, gbl);
::bell pair.ctrl(qc, gbo, gbl);

Call different version of bell_pair quantum
kernel

Q-Pragma - Controlling instructions with a qubit
Example of quantum ctrl directive

Code example: ctrl directive

quint8 t quantum_int;
gbool anc;

do {

reset(quantum_int);
wall::H<8UL>(quantum_int);

#pragma quantum ctrl(quantum_int
X(anc);
} while (measure_and reset(anc));

Q-Pragma - Safe uncomputation
Example of quantum compute directive

Code example: compute directive

#pragma quantum routine (double angle)
void RZ_2gb(const gbool & gbl, const gbool & gb2) {

gbool ancilla;

{

#pragma quantum compute
{ CCNOT(gbl, gb2, ancilla); }

(RZ(angle))(ancilla);

=VIDEN

Create a parametrized routine

Uncompute automatically at
the end of the scope

© Eviden SAS

@ Reminder

A quantum routine is
aQ pure quantum
function.

Then, a routine is:

 Callable

(as any function)
* Reversible
« Controllable

Q-Pragma - an advanced standard library
Shor algorithm, using Q-Pragma arithmetic operators

Code example Shor algorithm in 10 lines

to divide = .., random_base = .., measurement = OUL;

#pragma quantum scope with (to_divide, random _base, measurement
{

gint_ t<QSIZE> first_register;

wall::H<QSIZE>(first register);

gint t<QSIZE> second register =
gpragma: :pow(random_base, first register) % to_divide;
reset(second register);

qft<QSIZE>(first_register);
measurement = measure_and_reset(first register);

=VIDEN

Thank you

For more information, please scan:

_ .iE Papier published in
ir-r o Science of Computer Programming

o

Contacts:

Confidential information owned by Eviden SAS, to be used by the recipient only.
This document, or any part of it, may not be reproduced, copied, circulated
and/or distributed nor quoted without prior written approval from Eviden SAS.

© Eviden SAS

mailto:oceane.koska@eviden.com
mailto:arnaud.gazda@eviden.com

	Diapositive 1 From NISQ to Hybrid Computing
	Diapositive 2 Quantum – a new computing paradigm
	Diapositive 3 NISQ and Hybrid Programming
	Diapositive 4 NISQ and Hybrid Programming
	Diapositive 5 NISQ Programming and Quantum Error Correction
	Diapositive 6 FTQC QPUs and HPC accelerators
	Diapositive 7 Content Overview
	Diapositive 8
	Diapositive 9 HPC hardware is already hybrid
	Diapositive 10 Extending a programming language
	Diapositive 11 Extending a programming language
	Diapositive 12
	Diapositive 13 Extending C++ with two types of pragmas
	Diapositive 14 Quantum capabilities
	Diapositive 15 Quantum capabilities are not supported by existing frameworks
	Diapositive 16 Q-Pragma – Quantum types and C++ pragma directives
	Diapositive 17
	Diapositive 18 Q-Pragma – Creating advanced quantum kernels
	Diapositive 19 Q-Pragma – Controlling instructions with a qubit
	Diapositive 20 Q-Pragma – Safe uncomputation
	Diapositive 21 Q-Pragma – an advanced standard library
	Diapositive 22 Thank you

