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No-cloning & no-telegraphing theorems

No-cloning theorem (Wootters and Zurek, 1982)

No quantum operation can clone an arbitrary quantum state.

No-telegraphing theorem (Werner, 1998)

Arbitrary quantum state cannot be transmitted through classical channels
without pre-shared entanglement.
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Equivalence of no-cloning and no-telegraphing

These two no-go theorems are informationally equivalent:

If telegraphing were possible, one could telegraph the state and copy
the classical information to create two clones.
If cloning were possible, one could clone the state many times and
perform tomography to obtain a classical description of the state and
then telegraph this description.

However, they are not computationally equivalent (Nehoran and Zhandry,
2024).
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Uncloneable encryption

Uncloneable encryption is a symmetric-key encryption scheme with
classical messages & keys, and quantum ciphertexts.

Encryption Scheme

Generation: Gen(security) = key

Encryption: Enc(message, key) = ciphertext

Decryption: Dec(ciphertext, key) = message

Security is defined against a cloning attack: a single quantum ciphertext is
processed once and then used to enable two separated parties, both
holding the key, to recover information about the message.
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Untelegraphable encryption

As uncloneable encryption, but restricted to telegraphing attacks:

A P*

B

C

Enc(mb, k)

bit b

key k

k

k

guess bB

guess bC

Goal: Prevent parties B and C from simultaneously guessing bit b with
high probability.

*P is a quantum-to-classical CPTP map.
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Haar-measure encryption

For a log(n)-bit message m ∈ [n] and a Haar-random unitary U ∈ U(d) as
the key:

Enc(m,U) = U
(

|m〉〈m|
n×n matrix

⊗ Id/n

identity

)
U∗

Efficiency (plain model vs. computational model)

Sampling a Haar-random U is not efficient.
Plain model ⇒ unitary t-design (bounded moments security analysis).
Computational model ⇒ pseudorandom unitary.
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Result 1

Untelegraphable-indistinguishability
The Haar-measure encryption scheme for classical bits (2 messages)
achieves untelegraphable-indistinguishable security, with telegraphing
attack success probability upper bounded by

1
2 +

1
2
√

d + 1
negligible

.

In contrast, the best known upper bound for cloning attack is
(Bhattacharyya and Culf, 2025):

1
2 +

3 log log d
2 log d

not negligible

.
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t-copy untelegraphable encryption

Unlike uncloneable encryption, untelegraphable encryption admits a
stronger adversarial model where P receives t copies of the ciphertext.

A P

B

C

Enc(mb, k)⊗t
bit b

key k

k

k

guess bB

guess bC
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Result 2

t-copy untelegraphable-indistinguishability
The Haar-measure encryption scheme for n classical messages achieves
t-copy untelegraphable-indistinguishable security, with telegraphing attack
success probability upper bounded by

1
2 +

7t
√

n√
d

negligible

.

The proof relies on Haar moments up to order 2t, and therefore requires a
unitary 2t-design.
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Collusion-resistant untelegraphable encryption

In a collusion attack, the adversary P adaptively interacts with the sender
A across successive Q rounds.

A P

B

C

Enc(m(i)
b(i) , k)

m(i+1)

bit b(i)

key k

k

k

guess b(Q)
B

guess b(Q)
C
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Result 3 & 4

Collusion-resistant untelegraphable-indistinguishability
The Haar-measure encryption scheme for n classical messages achieves
Q-round collusion-resistant untelegraphable-indistinguishable security, with
telegraphing attack success probability upper bounded by

1
2 +

7Q
√

n√
d

negligible

.

Everlasting security
Unconditional security holds for polynomially many rounds, and
everlasting* security for arbitrarily many rounds under pseudorandom
unitaries.

*The adversaries are computationally bounded.
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s-receiver untelegraphable encryption

The telegraphing attack is extended to s receivers, each given classical
information and the key.

A P

B

C

D

...

Enc(mb, k)

bit b

key k

k

k

k

guess bB

guess bC

guess bD
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Result 5

In analogy with the informational equivalence of no-cloning and
no-telegraphing, untelegraphable encryption emerges as a limiting case of
uncloneable encryption when the number of receivers grows.

Convergence of cloning to telegraphing attacks
For any uncloneable encryption scheme, the success probability of the
cloning attack with s-receiver converges to that of the telegraphing attack
at rate

O
(

1
3
√

s

)
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Result 6

Minimality of the Haar-measure scheme
Among all quantum encryption schemes, the Haar-measure encryption has
the smallest possible success probability against cloning and telegraphing
attacks.

Lower bounds for uncloneable and untelegraphable encryption
For any quantum encryption scheme with ciphertext dimension d, the
success probability against cloning and telegraphing attacks is lower
bounded by

1
2 +Ω

(
1√
d

)
.

The previous best known lower bound was (Majenz, Schaffner and
Tahmasbi, 2021):

1
2 +Ω

( 1
d
)
.
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Questions?


