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Introduction

We tackle optimization problems by developping quantum algorithm for the
Fault-Tolerant Quantum Computing (FTQC) era.

We aim for at least quadratic speedup to offset the absorption of the
acceleration by error correction.

We present current investigation on using the discrete quantum random walk
(MNRS version) to address our particular optimization problems.
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1st problem: Multi-objective Path finding

Figure: Two paths
respecting several
requirement

min
{xkij }∈{0,1}|E|×n

∑
(ij)∈E

aij (x
1
ij + · · ·+ xnij ) (1)

min
{xkij }∈{0,1}|E|×n

∑
(i,j)∈E

∑
k ̸=l

cklij x
k
ij x

l
ij (2)

min
{xkij }∈{0,1}|E|×n

1

n

∑
k

(tk )
2 −

(
1

n

∑
k

tk

)2

, tk =
∑

(i,j)∈E

tijx
k
ij

(3)

• xkij ∈ {0, 1} is the part of the k-th path from i to j

• The formula (1) is the minimisation of risk for all paths

• The formula (2) permits to minimize the number of path
going through the same direction

• The formula (3) minimises the travel time variance : so as
to ensure isotiming
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Assignment problem

Figure: Symmetric assignment

Figure: Asymmetric assignment with M
agents and N objects and 2 constraints
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2nd problem: Optimal assignment

max
{xij}∈{0,1}M×N

∑
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• xij ∈ 0, 1 is the assignment between an agent A to an objet
O

• The objective function is a maximisation from benefit
assigment minus conflict between two assigment

• The formula (8) express that the agent i has Mi assignment
into it.

• The formula (9) express that objet can be assign to at most
1 agent
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Optimal assignment
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Complexity

The complexity of these problems lies in their NP-Completeness, stemming from
the multi-objective pathfinding and from the multiple assignment conflicts.

Quantum Walks take advantage of our problems’ graph structures.

While existing implementations of quantum walks for solving optimization
problems have focused on continuous-time quantum walks, we investigate the
potential of discrete-time quantum walks, addressing several key challenges:

• The modeling of the coin operator.

• The efficient encoding of the graph structure in a quantum register.

0”U. Nzongani et al, Sampled-Based Guided Quantum Walk, 2025”
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Random Walk as a Markov Chain

Markov Chain

Sequence of events

Process with no memory

pij : transition probability from i to j

P : Transition probability matrix

Sum of all row’s elements = 1

pT
i P = pi+1

Aperiodic and Irreducible

Random walk

Undirected graph search

From one node to its neighbors

pn(i): probability to be at i at time n

A : Adjacency matrix

Sum of all column’s elements = 1

Api = pi+1

Connected and Irreducible
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Random Walk Transition Matrix

Consider a graph G where the initial state,
denoted as p0, is associated with the red
node.
A the adjacency matrix of graph G .

A =
1

3



0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0



p0 = (01000000)T

p1 = Ap0 =
1
3
(10100100)T

p2 = Ap1
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Convergence into the stationary distribution π

After n iterations, for sufficiently large n, the state vector pn approximates the
stationary distribution π. Specifically, A∞p0 = Aπ = π where Aπ = π.

Perron-Frobenius Theorem

• If the adjacency matrix A is irreducible then the second-largest eigenvalue in
magnitude, λ2, is strictly less than 1.

• If the graph is non-bipartite, then all eigenvalues λm (∀m ∈ {1, . . . , ord(A)})
satify λm > −1

Given these conditions:

• λ1 = 1 is the highest eigenvalue, associated with the stationary distribution π.

• |λ2|: the second-largest eigenvalue in magnitude.

The spectral gap δ is defined as: δ = λ1 − |λ2|
The n(δ) iterations required to converge to the stationary distribution is
n(δ) = O( 1δ )
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Solution graph for our optimization problems

• The pathfinding problem graph is transformed into an assignment problem,
allowing the enumeration of total distinct paths through assignment counting.

• The problems are reformulated into a ”solution graph” that encapsulates all
possible solution, each one represented by a node.

• Two nodes in this graph are connected if the corresponding solutions are
neighbors: differing by one local change (addition, deletion, or substitution)
in their paths.
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Stationary distribution of the solution graph

Probability of transition from ADCE to ABCE:

PADCE→ABCE = 1
2 + 1

2
aAD+aDC−(aAB+aBC )
aAD+aDC+(aAB+aBC )

If the local change reduces the path length, specifically when
aAD + aDC − (aAB + aBC ) < 0, the probability favors that transition, implying
P(ADCE → ABCE ) > 1

2 .
Following the computation of transition probabilities, the resultant probabilities
must be normalized to ensure the adjacency matrix’s row sums total to 1,
maintaining a valid probability distribution across all states.

The stationary state of a random walk on this solution graph reveals that nodes
representing the optimal paths stand out.
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From adjacency matrix to coin operator with MNRS

• Inspired by the MNRS algorithm, we translate the adjacency matrix A of a
graph into a unitary operator U.

• The quantum walk is defined over the edges of a graph, with the state space
spanned by states of the form |x , y⟩ where (x , y) ∈ E . The ”current” state x
is in the first register, and the ”next” state y is in the second register.

• The states |ψx⟩ for x ∈ V are defined as: |ψx⟩ = 1
d

∑
x,y∈E |x , y⟩ where d is

the degree of vertex x .

• The coin operator C (P) is constructed to mix the next state by implementing
a reflection around the star states. It is defined as:
C (P) = 2

∑
x∈V |ψx⟩ ⟨ψx | − I .
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Quantum algorithm for generating solution graph

The quantum algorithm requires four registers:

• The first register indicates the beginning node of each segment in the path.

• The second one indicates the ending node of each segment in the path.

• The third and fourth are unique index for each possible path created.

Leverage superposition to generate all potential paths by mapping S . Each state in the
superposition, such as |0, 1⟩, |1, 2⟩, and |2, 3⟩ denotes individual edges in a path.

|ψS ⟩ =
1√
|S|

∑
(i,j)∈S

|i⟩ |j⟩ (1)

|ψS ⟩ =
1√
|S |

∑
(i,j)∈S

|i⟩ |S(i)⟩ (2)

US |i⟩ |0⟩⊗n = |i⟩ |S(i)⟩ (3)

An oracle is employed to evaluate pairs of solutions (nodes). We need to index each
pairs of solutions. It returns the transition probability between these pairs for navigating
the solution graph.

O |k⟩ |ψSk ⟩ |l⟩ |ψSl ⟩ (4)

With ψSk the path indexed by k and ψSl the path indexed by l .

0F. Magniez et al, Search via quantum walk, 2007
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Extraction of the Stationary State via Spectral
Decomposition

• Determining the stationary state therefore reduces to identifying the
eigenspace of the coin operator associated with eigenvalue 1.

• QPE is applied to the operator C with an arbitrary input state :
|ψ⟩ =

∑
i αi |vi ⟩

• the QPE produces the entangled state :
∑

i αi |vi ⟩ |λi ⟩

• The probability of observing the eigenvalue λ1 is |α1|2

• QAA can be employed to increase |α1|

• So, the stationary state is obtained through spectral projection onto the
eigenvalue 1
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Conclusion

• We directly used the quantum walk property to compute the stationary state.

• We need to find efficient implementation of Quantum Walk Operator based
on local path differences.

• Further investigations: Continuous-time quantum walk which avoids some
difficulties of the discrete one (coin operation implementation)
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