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Machine Learning Task: Binary Linear Classification

Training dataset

o Training dataset S: N pairs of {(x1,y1),...,(xn,yn)}, where training examples x;c(y) € RP,
labels yie[n € {+1, -1}

direction 2

R

o Perceptron learning aims to find a hyperplane w € RP, such that
{w | wTx;y; > 0,Vi € [N]}, and this feasible set is called version space.
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Dataset Assumption

Geometric

gin

Ty
The geometric margin z, := min;cy) W

of a hyperplane h = (w, b).
Assumption: The maximal margin v = maxy, z, <= 3 u' x;y; >~ for all i € [N].

direction 2

X,

Figure 1: An example of two possible linear classifiers on a linearly separable dataset. Picture from [Theodoridis, S., & Koutroumbas, K.
(2006)].
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Query Models

/
1

A classical data query on a training data (x;

,y/) refers to an evaluation of a Boolean function
fw = {0,1}, where

fw(xly]) =1 <= w'x/y! <0 (misclassified). (1)

A quantum data query on a training data |x/y!) refers to an evaluation of a quantum oracle F,
acting coherently on a superposition of data vectors,

Y
Fulxiy) = (=1)C0 |x]y]) | )

or equivalently,
Flw) x{y) [0) = |w) [x{y]) |0 & fu(x]y,)) - (3)
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Previous Work - 1

@ Online perceptron algorithm [Novikoff, 1962]
Upon misclassification: w « w + x/y!. = O*(%) ! classical data queries.

@ Online quantum perceptron (OQP) [Kapoor et al., 2016]
Using Grover’s search [Grover, 1996] for speeding up searching for misclassified examples.
= O*(g) quantum data queries.

Initialize model wq

—»[ Uniform sampler/Grover’s search J

An example (z/,y;)

Is (27, v;)




Previous Work - 2

@ Quantum version space perceptron (QVSP) [Kapoor et al., 2016]
An query to the hyperplane w; :

Gs ‘VVJ> — (71)1+(ij(le}’l)\/fwj-(XZvYZ)\/‘“Vij(XvaN)) IWJ) , (4)
can be built using O(N) quantum data queries as Eqn. (2). = O*(%) quantum queries.

o Improvement [Liao et al., 2024]: quantum counting = O*(,/%) quantum data queries.

=
/
)

Figure 2: An illustration of version space. Picture from [Minka, T. P. (2001)].
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Result 1 - Classical

Curse of Dimensionality in QVSP

We examine the QVSP algorithm proposed in [Kapoor et al., 2016], and show that instead of
O(y), sampling Pr[w | w € VS] = Q(vP) when v — 0.
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Figure 3: The perfect classification probability-dimension relationship (red) on an artificially designed dataset (Given from [Mohri,

M. et al. (2018)].) with its margin ~ (blue) upper bounded by 4/1/20—1 (cyan).

B Applying Grover’s search directly for the classifiers, in the worst case, QVSP uses
O*(N/~/~P) instead of O*(N/,/¥) quantum data queries.
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Linear Programming Approaches

Feasibility algorithms: ellipsoid method [Khachiyan, 1979](first polynomial-time solvability),
various cutting-plane methods [Vaidya, 1989, Bertsimas and Vempala, 2004].

Cutting-Plane Random Walk (CP-RW)

Preserving an approximate centroid z; of the current space P:.
The half space Hy11 = {w | (W — z:)"x/,,y{.; > 0} cut by a misclassified example (x/, 1, ¥/, ;).
Update: z;11 < % Zj’il WJ-/, where wj’ ~UH - (Pey1 = Hera NP = Hepn N HeN -+ - N Py)

Figure 4: An illustration of the algorithm from [Bertsimas and Vempala, 2004].

B Optimal complexity of O*(D log(1/7)) rounds (separation oracles).
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Bottleneck - Sampling

Hit-and-Run [Smith, 1984]

(1) Choose a line ¢ through the current point x uniformly at random.
(2) Move to a point y chosen uniformly from P; N 4.

@ The best-known mixing bound: O*(D3) steps [Lovdsz, 1999].

? Quantum speed-ups

Membership oracles

o Classically, with t queries, Op, (w) = 0 iff w € P;. where fw(xj’yj’, zj_1) =0 iff
(w — zj_l)Tfoyj’ >0, Vj € [t].

o Quantumly, Qp, can be implemented using O(+/t) quantum data queries
[Liao et al., 2024], with

Pe|w) [x{y/,zj—1)]0) = |w) |x]y/, zj_1) [0 ® fuw(x{y!, 2 1)),V € [t +1]. (5)

B t < O*(Dlog(1/v)) = Naive Hybrid cutting-plane random walk (HCP-RW) algorithm.
? Further quantum speed-ups- sampling? [Wocjan and Abeyesinghe, 2008]
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Szegedy's Quantum Walk Preliminaries

Unique eigenvector

It was shown by [Szegedy, 2004, Magniez et al., 2007] that for an irreducible and time-reversible
Markov chain P with stationary distribution 7v. The quantum walk W(P) := RgR4, where
Rz =2Mz —1, and A = span(|x) |0) : x € Q), B = span(|0) |x) : x € Q), has a unique
eigenvalue-1 eigenvector

|r) = |m)"10) = |m)" = > v/7x [x)0) .

xXEQ

Quantum walk operator
Implementation W; := W(P;) = U(P:)TSU(P:)RAU(Pt)T SU(Pt)R 4. With the swap S, and
quantum walk update U(P;) :

U(Pe) 1x)10) = |x) [px) = [x) D v/Py Iy) , ¥x € 9,

yEQ

| A

where py, denotes the transition probability from x to y.

.
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Result 2 - Quantum

Fully-Quantum Cutting-Plane Quantum Walk Algorithm (QCP-QW)

o High-level:
Outer loop: CP method, performing O*(D log(1/~)) updates to prepare final solution |).
Inner loop: Grover's search to amplify the probability of finding a separating hyperplane.

o Middle-level:
Applying O*(D) non-destructive quantum mean estimation @ UP"®®" on |7;) to acquire the
multivariate centroid z; 1 of #;y1.
Similarly, applying O*(D) non-destructive affine estimation U2 on |#;) to obtain the affine
transformation matrix S;y1 of #ry1.

o Low-level:
Applying the affine transformation g: to the states |7:) to ensure the convex body P: is in
near-isotropic position.
Applying the quantum walk evolution Uy, to generate the distribution |#:11) via

|geer1) = Uem |gefte) -

?For non-destructive multidimensional quantum amplitude estimation circuits, we point out the possibility to do so from
[Harrow and Wei, 2020, Cornelissen et al., 2022, Cornelissen and Hamoudi, 2023, van Apeldoorn et al., 2023].
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Quantum Walk Evolution Operator U;

Grover's % fix point search [Grover, 2005]

Two arbitrary quantum states with overlap | (m¢|meq1) |2 > p (0 < p < 1).
Given |7¢), |et1) = Us,m |me), such that |||fe41) — |mer1)] < e > 0.
Choosing m = O(log(log 1/€1)), unitaries {Ry, R;f, Ret1, RL_l} are invoked at most O(log1/e1)
times.
y

Recursive quantum walk evolutions

Uto=1,and Usjp1 = Ui Re - U:y,» “Rey1 - Ut

The unitaries R:, R;11 operators are selective phase shifts that R; = e'Tﬂ My + I'Itl, where ¢ is
the orthogonal projector onto span (|7¢)).

Ui =Ueo - Re- Ul Rep1 Uro = Re - Repa
U2 =Us1-Re- U - Rep1- U = (Re Rea) - Re - (RE R - Reya - (Re - Reya)

|7?t+1> S Ut,m \771:) = Ut,m—lRtUIm_lRt+1Ut,m—1 |71't> =R:- Rt+1 R Rt+1 |7Tt)
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Implementation of R:;1 - Convenient

The state |7¢) is a uniform superposition of states on the convex body P;. It can be decomposed
in the subspace Hy, = span (|met1) , |73 4)) as |me) = sinOep1 |mer1) + cosOpyn [ 1), where

Mo 176)  Soepen 1 6 Swep, VAN Srep,,, vAERRI0)

|7rt+1) = n = — )
Iy o)l V(e Opy e \ 2oxe Py T

From the actions of quantum oracle Py 1 in Eqn. (5):

Pri1|w) |Xl.(+1y1{+17 z:) 0) = |w) |X;+1}’£+1»Zt> 0@ fW(X;+1}’£+1’Zt)> )

it can be easily verified that Py |mey1) [0) = |mep1) [0) and Prpq |mi) [0) = |mh ;) (1),

Herewith, Ri11 = e3 Mit1 + I'Itl+1 can be constructed by letting

Rest = Pl1 (1@ (e 10) (0] + [1) (1)) Pesa. (6)
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Implementation of R; - Computationally Expensive

As has been shown in [Magniez et al., 2007] and [Wocjan and Abeyesinghe, 2008, Corollary 2],
the phase estimation [Cleve et al., 1998] circuit PE(W;) can be leveraged to realise R:.

For some e, > 0, there is a quantum circuit V; of C? @ C? @ (C2)®ac, using PE(W;) circuit

c = O(log \/1—?2)) times with a = O(log %) ancillary qubits each.

Re= V(1@ (T 10) (01 + (1 = [0) (0|%*) Vs, ()

that || Re[v) 1057 — Re[viF) 0)% || < 2/ea.

—@

|0y QFT;!

—{] -
) w2 w W
i i i

Figure 5: Phase estimation circuit PE(W;), where H is the Hadamard gate, QFT ~! denotes the inverse
quantum Fourier transform circuit, and W; = U(P;)T SU(P;)RAU(P:)T SU(P:)R A
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The Main Theorem

Theorem (Hit-and-Run Quantum Walk)

Let P: be an ergodic symmetric Markov chain defined by the Hit-and-Run algorithm with
stationary uniform distribution 7 on the support P: with an initial distribution |r¢) = |r}) |0).
If the following properties hold:

o Mixing time: dpv(P{ - 71, 7t) < €.

o Warmness: ||mwey1/7:|| = O(1), where |7 /o|| = fRD 7r(x)dx

a(x)

o Overlap: |(m¢|mei1)| = [ro V/7e(X)mer1(x) dx = Q(1).

Then, we can obtain |fei1) = Upm |me) with || |Fes1) — |mesa) || < e, using O (/T log(1/€)) calls
to the quantum walk operators W;.

v

B Using Hit-and-Run, start from .11, takes 7 = O*(D3) steps to generate a uniform
distribution 7¢. The quantum walk evolution => U, can be achieved by using O* (D!%)
calls to the quantum walk operators W;.
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Lemmas

For uniform 7+ over P;, its quantum sample in the continuous space

|7y = Jp, Ve |X) dx = [ /ﬁ [x) dx.

Overlap lemma

From [Bertsimas and Vempala, 2004], the volume left in each round is at least 1/3 with high
probability.

_ 1 . V(Pes1) 1
‘<’rt‘“+1>“/reo V VEvEa ™ Wraveny - Vs =W

Hence, in QCP-QW algorithm, the overlap condition |(7¢|me11)| = (1) is met.

.

Warmness lemma

1
fmasme = [Ty gax = [ T 2 ax= AP <5 o),

X =
RO Tt(x) Pei1 ﬁ V(Pri1) V(Pri1)

Hence, in QCP-QW algorithm, the warmness conditions ||mws+1/7¢|| = O(1) is met.

.
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Query Complexity

A summary of algorithms and data query complexities

Algorithm Complexity

Version Space Perceptron O* (Dé 7—ND)

QVSP 0~ (D3 ,/Z5)e

Online Perceptron O*( log(1/42)N)

oQp O*( log(1/7*)vV'N)

CP-RW (Hit-and-Run) o*(D ]og( YN + D? log( 1)))®e
HCP-RW (1) O*(Dlog(L)(VN + D5 \/ﬁ)) b
QCP-QW (2) O*(Dlog(3) (VN +D?, [log()))

“Here we only present the corrected result of the improved-QVSP of
Liao et al. (2024).

bFor Hit-and-Run CP-RW and HCP-RW introduced in Section 4.2, we
simplify the result using O(log? N) < O(D). Otherwise, tighter bounds
can be achieved by replacing an O* (D) factor in O* (D®) and O* (D*:%)
with log? N.

16.01.2026




E
B

B
[

Bertsimas, D. and Vempala, S. (2004).
Solving convex programs by random walks.
J. ACM, 51(4):540-556.

Cleve, R., Ekert, A., Macchiavello, C., and Mosca, M. (1998).

Quantum algorithms revisited.

Proceedings of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 454(1969):339-354.

Cornelissen, A. and Hamoudi, Y. (2023).

A sublinear-time quantum algorithm for approximating partition functions.

In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1245-1264. SIAM.

Cornelissen, A., Hamoudi, Y., and Jerbi, S. (2022).

Near-optimal quantum algorithms for multivariate mean estimation.

In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2022, page 33-43, New York, NY, USA. Association for Computing Machinery.

Grover, L. K. (1996).

A fast quantum mechanical algorithm for database search.

In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
STOC '96, page 212-219, New York, NY, USA. Association for Computing Machinery.

Grover, L. K. (2005).
A different kind of quantum search.
arXiv preprint quant-ph/0503205.

Harrow, A. W. and Wei, A. Y. (2020).

(JI1Q 2026) 16.01.2026



) B = R

Adaptive quantum simulated annealing for bayesian inference and estimating partition
functions.

In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA '20, page 193-212, USA. Society for Industrial and Applied Mathematics.

Kapoor, A., Wiebe, N., and Svore, K. (2016).

Quantum perceptron models.

In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 29. Curran Associates, Inc.

Khachiyan, L. G. (1979).
A polynomial algorithm in linear programming.
In Doklady Akademii Nauk, volume 244, pages 1093-1096. Russian Academy of Sciences.

Liao, P., Sanders, B. C., and Byrnes, T. (2024).
Quadratic quantum speedup for perceptron training.
Physical Review A, 110(6):062412.

Lovdsz, L. (1999).
Hit-and-run mixes fast.
Mathematical Programming, 86:443—-461.

Magniez, F., Nayak, A., Roland, J., and Santha, M. (2007).

Search via quantum walk.

In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing,
STOC '07, page 575-584, New York, NY, USA. Association for Computing Machinery.

Novikoff, A. B. (1962).
On convergence proofs on perceptrons.

(JI1Q 2026) 16.01.2026



In Proceedings of the Symposium on the Mathematical Theory of Automata, volume 12,
pages 615-622. New York, NY.

Smith, R. L. (1984).

Efficient monte carlo procedures for generating points uniformly distributed over bounded
regions.

Operations Research, 32(6):1296-1308.

Szegedy, M. (2004).
Quantum speed-up of Markov chain based algorithms.
In 45th Annual IEEE Symposium on Foundations of Computer Science, pages 32—41. |IEEE.

Vaidya, P. (1989).

A new algorithm for minimizing convex functions over convex sets .

In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages
338-343, Los Alamitos, CA, USA. IEEE Computer Society.

van Apeldoorn, J., Cornelissen, A., Gilyén, A., and Nannicini, G. (2023).

Quantum tomography using state-preparation unitaries.

In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1265-1318. SIAM.

Wocjan, P. and Abeyesinghe, A. (2008).
Speedup via quantum sampling.
Phys. Rev. A, 78:042336.

(JI1Q 2026) 16.01.2026



Thanks for your attention.

Figure 6: https://arxiv.org/abs/2503.17308

(JI1Q 2026) 16.01.2026



	First section: Problem defined

