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Machine Learning Task: Binary Linear Classification

Training dataset

Training dataset S: N pairs of {(x1, y1), . . . , (xN , yN)}, where training examples xi∈[N] ∈ RD ,
labels yi∈[N] ∈ {+1,−1}.

Perceptron learning aims to find a hyperplane w ∈ RD , such that
{w | wT xiyi > 0,∀i ∈ [N]}, and this feasible set is called version space.
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Dataset Assumption

Geometric margin

The geometric margin zh := mini∈[N]
|wT xi+b|

∥w∥2
of a hyperplane h = (w , b).

Assumption: The maximal margin γ = maxh zh ⇐⇒ ∃ uT xiyi ≥ γ for all i ∈ [N].

Figure 1: An example of two possible linear classifiers on a linearly separable dataset. Picture from [Theodoridis, S., & Koutroumbas, K.
(2006)].
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Query Models

Classical

A classical data query on a training data (x ′
i , y

′
i ) refers to an evaluation of a Boolean function

fw = {0, 1}, where

fw (x ′
i y

′
i ) = 1 ⇐⇒ wT x ′

i y
′
i ≤ 0 (misclassified). (1)

Quantum

A quantum data query on a training data |x ′
i y

′
i ⟩ refers to an evaluation of a quantum oracle Fw ,

acting coherently on a superposition of data vectors,

Fw |x ′
i y

′
i ⟩ = (−1)fw (x′i y

′
i ) |x ′

i y
′
i ⟩ , (2)

or equivalently,
F |w⟩ |x ′

i y
′
i ⟩ |0⟩ = |w⟩ |x

′
i y

′
i ⟩ |0⊕ fw (x ′

i y
′
i )⟩ . (3)
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Previous Work - 1

Online perceptron algorithm [Novikoff, 1962]
Upon misclassification: w ← w + x ′

i y
′
i . ⇒ O∗( N

γ2 )
1 classical data queries.

Online quantum perceptron (OQP) [Kapoor et al., 2016]
Using Grover’s search [Grover, 1996] for speeding up searching for misclassified examples.

⇒ O∗(
√

N
γ2 ) quantum data queries.

1The asterisk notation O∗(·) to suppress the terms with the error parameter, log(D), log log(1/γ) and log log(N).
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Previous Work - 2

Quantum version space perceptron (QVSP) [Kapoor et al., 2016]
An query to the hyperplane wj :

GS |wj ⟩ = (−1)1+(fwj
(x1,y1)∨fwj

(x2,y2)∨···∨fwj
(xN ,yN )) |wj ⟩ , (4)

can be built using O(N) quantum data queries as Eqn. (2). ⇒ O∗( N√
γ
) quantum queries.

Improvement [Liao et al., 2024]: quantum counting ⇒ O∗(
√

N
γ
) quantum data queries.

Figure 2: An illustration of version space. Picture from [Minka, T. P. (2001)].
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Result 1 - Classical

Curse of Dimensionality in QVSP

We examine the QVSP algorithm proposed in [Kapoor et al., 2016], and show that instead of
Θ(γ), sampling Pr[w | w ∈ VS] = Ω(γD) when γ → 0.
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Figure 3: The perfect classification probability-dimension relationship (red) on an artificially designed dataset (Given from [Mohri,

M. et al. (2018)].) with its margin γ (blue) upper bounded by
√

1/2D−1 (cyan).

■ Applying Grover’s search directly for the classifiers, in the worst case, QVSP uses

O∗(N/
√
γD) instead of O∗(N/

√
γ) quantum data queries.
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Linear Programming Approaches

Feasibility algorithms: ellipsoid method [Khachiyan, 1979](first polynomial-time solvability),
various cutting-plane methods [Vaidya, 1989, Bertsimas and Vempala, 2004].

Cutting-Plane Random Walk (CP-RW)

Preserving an approximate centroid zt of the current space Pt .
The half space Ht+1 = {w | (w − zt)T x ′

t+1y
′
t+1 > 0} cut by a misclassified example (x ′

t+1, y
′
t+1).

Update: zt+1 ← 1
M

∑M
j=1 w ′

j , where w ′
j ∼ UHt+1

. (Pt+1 = Ht+1 ∩ Pt = Ht+1 ∩ Ht ∩ · · · ∩ P0)

Figure 4: An illustration of the algorithm from [Bertsimas and Vempala, 2004].

■ Optimal complexity of O∗(D log(1/γ)) rounds (separation oracles).

(JIQ 2026) 16.01.2026 8 / 18



Bottleneck - Sampling

Hit-and-Run [Smith, 1984]

(1) Choose a line ℓ through the current point x uniformly at random.
(2) Move to a point y chosen uniformly from Pt ∩ ℓ.

The best-known mixing bound: O∗(D3) steps [Lovász, 1999].

? Quantum speed-ups

Membership oracles

Classically, with t queries, OPt (w) = 0 iff w ∈ Pt . where fw (x ′
j y

′
j , zj−1) = 0 iff

(w − zj−1)
T x ′

j y
′
j > 0, ∀j ∈ [t].

Quantumly, QPt can be implemented using O(
√
t) quantum data queries

[Liao et al., 2024], with

Pt |w⟩ |x ′
j y

′
j , zj−1⟩ |0⟩ = |w⟩ |x ′

j y
′
j , zj−1⟩ |0⊕ fw (x ′

j y
′
j , zj−1)⟩ ,∀j ∈ [t + 1]. (5)

■ t ≤ O∗(D log(1/γ)) ⇒ Naive Hybrid cutting-plane random walk (HCP-RW) algorithm.

? Further quantum speed-ups- sampling? [Wocjan and Abeyesinghe, 2008]
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Szegedy’s Quantum Walk Preliminaries

Unique eigenvector

It was shown by [Szegedy, 2004, Magniez et al., 2007] that for an irreducible and time-reversible
Markov chain P with stationary distribution π. The quantum walk W (P) := RBRA, where
RI = 2ΠI −1, and A = span(|x⟩ |0⟩ : x ∈ Ω), B = span(|0⟩ |x⟩ : x ∈ Ω), has a unique
eigenvalue-1 eigenvector

|π⟩ = |π⟩′ |0⟩ = |π⟩′ =
∑
x∈Ω

√
πx |x⟩ |0⟩ .

Quantum walk operator

Implementation Wt := W (Pt) = U(Pt)†SU(Pt)RAU(Pt)†SU(Pt)RA. With the swap S , and
quantum walk update U(Pt) :

U(Pt) |x⟩ |0⟩ = |x⟩ |px ⟩ = |x⟩
∑
y∈Ω

√
pxy |y⟩ , ∀x ∈ Ω,

where pxy denotes the transition probability from x to y .
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Result 2 - Quantum

Fully-Quantum Cutting-Plane Quantum Walk Algorithm (QCP-QW)

High-level:
Outer loop: CP method, performing O∗(D log(1/γ)) updates to prepare final solution |πr ⟩.
Inner loop: Grover’s search to amplify the probability of finding a separating hyperplane.

Middle-level:
Applying O∗(D) non-destructive quantum mean estimation a Umean

t on |π̃t⟩ to acquire the
multivariate centroid zt+1 of π̃t+1.
Similarly, applying O∗(D) non-destructive affine estimation Uaff

t on |π̃t⟩ to obtain the affine
transformation matrix St+1 of π̃t+1.

Low-level:
Applying the affine transformation gt to the states |π̃t⟩ to ensure the convex body Pt is in
near-isotropic position.
Applying the quantum walk evolution Ũt,m to generate the distribution |π̃t+1⟩ via

|gt π̃t+1⟩ = Ũt,m |gt π̃t⟩ .
aFor non-destructive multidimensional quantum amplitude estimation circuits, we point out the possibility to do so from

[Harrow and Wei, 2020, Cornelissen et al., 2022, Cornelissen and Hamoudi, 2023, van Apeldoorn et al., 2023].
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Quantum Walk Evolution Operator Ut,m

Grover’s π
3 fix point search [Grover, 2005]

Two arbitrary quantum states with overlap | ⟨πt |πt+1⟩ |2 ≥ p (0 < p ≤ 1).
Given |πt⟩, |π̃t+1⟩ = Ut,m |πt⟩, such that ∥|π̃t+1⟩ − |πt+1⟩∥ ≤ ϵ1 > 0.

Choosing m = O(log(log 1/ϵ1)), unitaries {Rt ,R
†
t ,Rt+1,R

†
t+1} are invoked at most O(log 1/ϵ1)

times.

Recursive quantum walk evolutions

Ut,0 = 1, and Ut,i+1 = Ut,i · Rt · U†
t,i · Rt+1 · Ut,i .

The unitaries Rt , Rt+1 operators are selective phase shifts that Rt = e
iπ
3 Πt +Π⊥

t , where Πt is
the orthogonal projector onto span (|πt⟩).

Example

Ut,1 = Ut,0 · Rt · U†
t,0 · Rt+1 · Ut,0 = Rt · Rt+1

Ut,2 = Ut,1 · Rt · U†
t,1 · Rt+1 · Ut,1 = (Rt · Rt+1) · Rt · (R†

t+1R
†
t ) · Rt+1 · (Rt · Rt+1)

. . .
|π̃t+1⟩ = Ut,m |πt⟩ = Ut,m−1RtU

†
t,m−1Rt+1Ut,m−1 |πt⟩ = Rt · Rt+1 · · ·Rt · Rt+1 |πt⟩
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Implementation of Rt+1 - Convenient

Example

The state |πt⟩ is a uniform superposition of states on the convex body Pt . It can be decomposed
in the subspace Hπt = span (|πt+1⟩ , |π⊥

t+1⟩) as |πt⟩ = sin θt+1 |πt+1⟩+ cos θt+1 |π⊥
t+1⟩, where

|πt+1⟩ =
ΠPt+1

|πt⟩
∥ΠPt+1

|πt⟩∥
=

∑
x∈Pt+1

|x⟩ ⟨x |
∑

x′∈Pt

√
πt,x′ |x ′⟩|0⟩√

⟨πt |ΠPt+1
|πt⟩

=

∑
x∈Pt+1

√
πt,x |x⟩|0⟩√∑

x∈Pt+1
πt,x

,

From the actions of quantum oracle Pt+1 in Eqn. (5):

Pt+1 |w⟩ |x ′
t+1y

′
t+1, zt⟩ |0⟩ = |w⟩ |x ′

t+1y
′
t+1, zt⟩ |0⊕ fw (x ′

t+1y
′
t+1, zt)⟩ ,

it can be easily verified that Pt+1 |πt+1⟩ |0⟩ = |πt+1⟩ |0⟩ and Pt+1 |π⊥
t+1⟩ |0⟩ = |π⊥

t+1⟩ |1⟩.
Herewith, Rt+1 = e

iπ
3 Πt+1 +Π⊥

t+1 can be constructed by letting

Rt+1 = P†
t+1(1⊗ (e

iπ
3 |0⟩ ⟨0|+ |1⟩ ⟨1|))Pt+1. (6)
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Implementation of Rt - Computationally Expensive

As has been shown in [Magniez et al., 2007] and [Wocjan and Abeyesinghe, 2008, Corollary 2],
the phase estimation [Cleve et al., 1998] circuit PE(Wt) can be leveraged to realise Rt .
For some ϵ2 > 0, there is a quantum circuit Vt of Cd ⊗ Cd ⊗ (C2)⊗ac , using PE(Wt) circuit
c = O(log 1√

ϵ2
)) times with a = O(log 1

∆
) ancillary qubits each.

R̃t = V †
t (1⊗ (e

iπ
3 |0⟩ ⟨0|⊗ac + (1− |0⟩ ⟨0|⊗ac )))Vt , (7)

that ∥R̃t |ψ±
k ⟩ |0⟩

⊗ac − Rt |ψ±
k ⟩ |0⟩

⊗ac ∥ ≤ 2
√
ϵ2.

Figure 5: Phase estimation circuit PE(Wt), where H is the Hadamard gate, QFT−1 denotes the inverse

quantum Fourier transform circuit, and Wt = U(Pt)
†SU(Pt)RAU(Pt)

†SU(Pt)RA
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The Main Theorem

Theorem (Hit-and-Run Quantum Walk)

Let Pt be an ergodic symmetric Markov chain defined by the Hit-and-Run algorithm with
stationary uniform distribution πt on the support Pt with an initial distribution |πt⟩ = |π′

t⟩ |0⟩.
If the following properties hold:

Mixing time: dTV(Pτ
t · πt+1,πt) ≤ ϵ.

Warmness: ∥πt+1/πt∥ = O(1), where ∥π/σ∥ :=
∫

RD
π(x)
σ(x)π(x)dx .

Overlap: |⟨πt |πt+1⟩| =
∫

RD

√
πt(x)πt+1(x) dx = Ω(1).

Then, we can obtain |π̃t+1⟩ = Ũt,m |πt⟩ with ∥ |π̃t+1⟩ − |πt+1⟩ ∥ ≤ ϵ, using O
(√
τ log(1/ϵ)

)
calls

to the quantum walk operators Wt .

■ Using Hit-and-Run, start from πt+1, takes τ = O∗(D3) steps to generate a uniform
distribution πt . The quantum walk evolution ⇒ Ut,m can be achieved by using O∗(D1.5)
calls to the quantum walk operators Wt .
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Lemmas

For uniform πt over Pt , its quantum sample in the continuous space

|πt⟩′ =
∫
Pt

√
πt,x |x⟩ dx =

∫
Pt

√
1

V (Pt )
|x⟩ dx .

Overlap lemma

From [Bertsimas and Vempala, 2004], the volume left in each round is at least 1/3 with high
probability.

| ⟨πt |πt+1⟩ | =
∫

RD

√
1

V (Pt)V (Pt+1)
dx =

V (Pt+1)√
V (Pt)V (Pt+1)

≥
√

1

3
= Ω(1).

Hence, in QCP-QW algorithm, the overlap condition |⟨πt |πt+1⟩| = Ω(1) is met.

Warmness lemma

∥πt+1/πt∥ =
∫

RD

πt+1(x)
πt(x)

πt+1(x)dx =

∫
Pt+1

1
V (Pt+1)

1
V (Pt )

1

V (Pt+1)
dx =

V (Pt)

V (Pt+1)
≤ 3 = O(1).

Hence, in QCP-QW algorithm, the warmness conditions ∥πt+1/πt∥ = O(1) is met.
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Query Complexity

A summary of algorithms and data query complexities
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Thanks for your attention.

Figure 6: https://arxiv.org/abs/2503.17308
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