
Resource-Aware Hybrid Quantum
Programming with General Recursion and

Quantum Control

Kostia Chardonnet, Emmanuel Hainry, Romain Péchoux, Thomas Vinet

15/01/2026

LORIA, Nancy

|1⟩⟨18|

Talk outline

Motivations

Hyrql: a hybrid language

Term rewrite systems and resource analysis

Future work

|2⟩⟨18|

1. Motivations

|2⟩⟨18|

Motivations

History of quantum algorithms:

• Based on the QRAM model (Shor): classical control

• Then, interest in quantum control:

QS(U,V) = |0⟩ ⟨0| ⊗ UV + |1⟩ ⟨1| ⊗ VU

• Next steps: build a hybrid language, i.e. with both control
flows

|3⟩⟨18|

Motivations

History of quantum algorithms:

• Based on the QRAM model (Shor): classical control

• Then, interest in quantum control:

QS(U,V) = |0⟩ ⟨0| ⊗ UV + |1⟩ ⟨1| ⊗ VU

• Next steps: build a hybrid language, i.e. with both control
flows

|3⟩⟨18|

Motivations

History of quantum algorithms:

• Based on the QRAM model (Shor): classical control

• Then, interest in quantum control:

QS(U,V) = |0⟩ ⟨0| ⊗ UV + |1⟩ ⟨1| ⊗ VU

• Next steps: build a hybrid language, i.e. with both control
flows

|3⟩⟨18|

Contributions

Hyrql: a hybrid language with general recursion and classical
control

• Extension of Symmetric-Pattern Matching [SVV18]

• Typing discipline to ensure feasibility

• No measurement, but strictly more that a Circuit Description
Language

• Polynomial termination ensures polynomial size circuits

• Amenable to static analysis through a translation to Term
Rewrite Systems

|4⟩⟨18|

Contributions

Hyrql: a hybrid language with general recursion and classical
control

• Extension of Symmetric-Pattern Matching [SVV18]

• Typing discipline to ensure feasibility

• No measurement, but strictly more that a Circuit Description
Language

• Polynomial termination ensures polynomial size circuits

• Amenable to static analysis through a translation to Term
Rewrite Systems

|4⟩⟨18|

Contributions

Hyrql: a hybrid language with general recursion and classical
control

• Extension of Symmetric-Pattern Matching [SVV18]

• Typing discipline to ensure feasibility

• No measurement, but strictly more that a Circuit Description
Language

• Polynomial termination ensures polynomial size circuits

• Amenable to static analysis through a translation to Term
Rewrite Systems

|4⟩⟨18|

Contributions

Hyrql: a hybrid language with general recursion and classical
control

• Extension of Symmetric-Pattern Matching [SVV18]

• Typing discipline to ensure feasibility

• No measurement, but strictly more that a Circuit Description
Language

• Polynomial termination ensures polynomial size circuits

• Amenable to static analysis through a translation to Term
Rewrite Systems

|4⟩⟨18|

Contributions

Hyrql: a hybrid language with general recursion and classical
control

• Extension of Symmetric-Pattern Matching [SVV18]

• Typing discipline to ensure feasibility

• No measurement, but strictly more that a Circuit Description
Language

• Polynomial termination ensures polynomial size circuits

• Amenable to static analysis through a translation to Term
Rewrite Systems

|4⟩⟨18|

Contributions

Hyrql: a hybrid language with general recursion and classical
control

• Extension of Symmetric-Pattern Matching [SVV18]

• Typing discipline to ensure feasibility

• No measurement, but strictly more that a Circuit Description
Language

• Polynomial termination ensures polynomial size circuits

• Amenable to static analysis through a translation to Term
Rewrite Systems

|4⟩⟨18|

2. Hyrql: a hybrid language

|4⟩⟨18|

Syntax

t ::= x | λx .t | t1t2

| c(t1, . . . , tn) | match t
{
c1(

−→x1) → t1 , . . . , cn(
−→xn) → tn

}
| |0⟩ | |1⟩ | qcase t

{
|0⟩ → t0 , |1⟩ → t1

}
| letrec f x = t |

∑n
i=1 αi · ti | shape(t)

• Example of standard constructs: unit (), pairs a⊗ b, numbers
0, S(n), lists [], h :: t

• shape extracts the classical structure:
|0⟩ :: |+⟩ :: [] → () :: () :: []

|5⟩⟨18|

Syntax

t ::= x | λx .t | t1t2
| c(t1, . . . , tn) | match t

{
c1(

−→x1) → t1 , . . . , cn(
−→xn) → tn

}

| |0⟩ | |1⟩ | qcase t
{
|0⟩ → t0 , |1⟩ → t1

}
| letrec f x = t |

∑n
i=1 αi · ti | shape(t)

• Example of standard constructs: unit (), pairs a⊗ b, numbers
0, S(n), lists [], h :: t

• shape extracts the classical structure:
|0⟩ :: |+⟩ :: [] → () :: () :: []

|5⟩⟨18|

Syntax

t ::= x | λx .t | t1t2
| c(t1, . . . , tn) | match t

{
c1(

−→x1) → t1 , . . . , cn(
−→xn) → tn

}
| |0⟩ | |1⟩ | qcase t

{
|0⟩ → t0 , |1⟩ → t1

}

| letrec f x = t |
∑n

i=1 αi · ti | shape(t)

• Example of standard constructs: unit (), pairs a⊗ b, numbers
0, S(n), lists [], h :: t

• shape extracts the classical structure:
|0⟩ :: |+⟩ :: [] → () :: () :: []

|5⟩⟨18|

Syntax

t ::= x | λx .t | t1t2
| c(t1, . . . , tn) | match t

{
c1(

−→x1) → t1 , . . . , cn(
−→xn) → tn

}
| |0⟩ | |1⟩ | qcase t

{
|0⟩ → t0 , |1⟩ → t1

}
| letrec f x = t

|
∑n

i=1 αi · ti | shape(t)

• Example of standard constructs: unit (), pairs a⊗ b, numbers
0, S(n), lists [], h :: t

• shape extracts the classical structure:
|0⟩ :: |+⟩ :: [] → () :: () :: []

|5⟩⟨18|

Syntax

t ::= x | λx .t | t1t2
| c(t1, . . . , tn) | match t

{
c1(

−→x1) → t1 , . . . , cn(
−→xn) → tn

}
| |0⟩ | |1⟩ | qcase t

{
|0⟩ → t0 , |1⟩ → t1

}
| letrec f x = t |

∑n
i=1 αi · ti

| shape(t)

• Example of standard constructs: unit (), pairs a⊗ b, numbers
0, S(n), lists [], h :: t

• shape extracts the classical structure:
|0⟩ :: |+⟩ :: [] → () :: () :: []

|5⟩⟨18|

Syntax

t ::= x | λx .t | t1t2
| c(t1, . . . , tn) | match t

{
c1(

−→x1) → t1 , . . . , cn(
−→xn) → tn

}
| |0⟩ | |1⟩ | qcase t

{
|0⟩ → t0 , |1⟩ → t1

}
| letrec f x = t |

∑n
i=1 αi · ti | shape(t)

• Example of standard constructs: unit (), pairs a⊗ b, numbers
0, S(n), lists [], h :: t

• shape extracts the classical structure:
|0⟩ :: |+⟩ :: [] → () :: () :: []

|5⟩⟨18|

Simple quantum gate example

Standard gate: the NOT gate

NOT =

(
0 1
1 0

)

In Hyrql:

|6⟩⟨18|

Simple quantum gate example

Standard gate: the NOT gate

NOT =

(
0 1
1 0

)

In Hyrql:

NOT = λx .qcase x

{
|0⟩ → |1⟩
|1⟩ → |0⟩

}
Abstraction

|6⟩⟨18|

Simple quantum gate example

Standard gate: the NOT gate

NOT =

(
0 1
1 0

)

In Hyrql:

NOT = λx .qcase x

{
|0⟩ → |1⟩
|1⟩ → |0⟩

}

Pattern-matching with two branches

|6⟩⟨18|

Simple quantum gate example

Standard gate: the NOT gate

NOT =

(
0 1
1 0

)

In Hyrql:

NOT = λx .qcase x

{
|0⟩ → |1⟩
|1⟩ → |0⟩

}
Output branches

|6⟩⟨18|

Other examples

cnot ≜ λc.λt.qcase c
{
|0⟩ → |0⟩ ⊗ t , |1⟩ → |1⟩ ⊗ not t

}

len ≜ letrec f l = match l
{
[] → 0, h :: t → S(f t)

}
repeat ≜ letrec f n = match n

{
0 → [],S(a) → |0⟩ :: (f a)

}
bqwalk ≜

letrec f q = λn.qcase q


|0⟩ → |0⟩ :: (repeat n)

|1⟩ → match n

{
0 → |1⟩ :: []

S(m) → |1⟩ :: (f |+⟩m)

}

|7⟩⟨18|

Other examples

cnot ≜ λc.λt.qcase c
{
|0⟩ → |0⟩ ⊗ t , |1⟩ → |1⟩ ⊗ not t

}
len ≜ letrec f l = match l

{
[] → 0, h :: t → S(f t)

}

repeat ≜ letrec f n = match n
{

0 → [],S(a) → |0⟩ :: (f a)
}

bqwalk ≜

letrec f q = λn.qcase q


|0⟩ → |0⟩ :: (repeat n)

|1⟩ → match n

{
0 → |1⟩ :: []

S(m) → |1⟩ :: (f |+⟩m)

}

|7⟩⟨18|

Other examples

cnot ≜ λc.λt.qcase c
{
|0⟩ → |0⟩ ⊗ t , |1⟩ → |1⟩ ⊗ not t

}
len ≜ letrec f l = match l

{
[] → 0, h :: t → S(f t)

}
repeat ≜ letrec f n = match n

{
0 → [],S(a) → |0⟩ :: (f a)

}
bqwalk ≜

letrec f q = λn.qcase q


|0⟩ → |0⟩ :: (repeat n)

|1⟩ → match n

{
0 → |1⟩ :: []

S(m) → |1⟩ :: (f |+⟩m)

}
|7⟩⟨18|

Operational semantics

• Follows a Call-by-value strategy

• (λx .t)v ⇝ t{v/x}
• qcase |0⟩

{
|0⟩ → t0 , |1⟩ → t1

}
⇝ t0

• qcase |1⟩
{
|0⟩ → t0 , |1⟩ → t1

}
⇝ t1

qcaseα · |0⟩+ β · |1⟩
{
|0⟩ → t0 , |1⟩ → t1

}
⇝ α · t0 + β · t1

• Superposition: parallel reduction

|8⟩⟨18|

Operational semantics

• Follows a Call-by-value strategy

• (λx .t)v ⇝ t{v/x}

• qcase |0⟩
{
|0⟩ → t0 , |1⟩ → t1

}
⇝ t0

• qcase |1⟩
{
|0⟩ → t0 , |1⟩ → t1

}
⇝ t1

qcaseα · |0⟩+ β · |1⟩
{
|0⟩ → t0 , |1⟩ → t1

}
⇝ α · t0 + β · t1

• Superposition: parallel reduction

|8⟩⟨18|

Operational semantics

• Follows a Call-by-value strategy

• (λx .t)v ⇝ t{v/x}
• qcase |0⟩

{
|0⟩ → t0 , |1⟩ → t1

}
⇝ t0

• qcase |1⟩
{
|0⟩ → t0 , |1⟩ → t1

}
⇝ t1

qcaseα · |0⟩+ β · |1⟩
{
|0⟩ → t0 , |1⟩ → t1

}
⇝ α · t0 + β · t1

• Superposition: parallel reduction

|8⟩⟨18|

Operational semantics

• Follows a Call-by-value strategy

• (λx .t)v ⇝ t{v/x}
• qcase |0⟩

{
|0⟩ → t0 , |1⟩ → t1

}
⇝ t0

• qcase |1⟩
{
|0⟩ → t0 , |1⟩ → t1

}
⇝ t1

qcaseα · |0⟩+ β · |1⟩
{
|0⟩ → t0 , |1⟩ → t1

}
⇝ α · t0 + β · t1

• Superposition: parallel reduction

|8⟩⟨18|

Operational semantics

• Follows a Call-by-value strategy

• (λx .t)v ⇝ t{v/x}
• qcase |0⟩

{
|0⟩ → t0 , |1⟩ → t1

}
⇝ t0

• qcase |1⟩
{
|0⟩ → t0 , |1⟩ → t1

}
⇝ t1

qcaseα · |0⟩+ β · |1⟩
{
|0⟩ → t0 , |1⟩ → t1

}
⇝ α · t0 + β · t1

• Superposition: parallel reduction

|8⟩⟨18|

Operational semantics

• Follows a Call-by-value strategy

• (λx .t)v ⇝ t{v/x}
• qcase |0⟩

{
|0⟩ → t0 , |1⟩ → t1

}
⇝ t0

• qcase |1⟩
{
|0⟩ → t0 , |1⟩ → t1

}
⇝ t1

qcaseα · |0⟩+ β · |1⟩
{
|0⟩ → t0 , |1⟩ → t1

}
⇝ α · t0 + β · t1

• Superposition: parallel reduction

|8⟩⟨18|

Type system

T ::= Qbit | B | T ⊸ T | T ⇒ T

• Constructed types B : nat,A⊗ B, list(B)

• Both linear and non-linear

• Typing judgment Γ;∆ ⊢ t : T , with a linear context ∆ and a
non-linear context Γ

• Orthogonality predicate s ⊥ t: same classical structure and
⟨s, t⟩ = 0

|9⟩⟨18|

Some typing rules

Γ, x : C ;∅ ⊢ x : C Γ; x : Q ⊢ x : Q

Γ, x : C ;∆ ⊢ t : T

Γ;∆ ⊢ λx .t : C ⇒T

Γ;∆, x : Q ⊢ t : T ′

Γ;∆ ⊢ λx .t : Q ⊸T ′

Γ;∆ ⊢ ti : Q
∑n

i=1 |αi |2 = 1 ∀i ̸= j , ti ⊥ tj

Γ;∆ ⊢
∑n

i=1 αi · ti : Q

Back on len ≜ letrec f l = match l
{
[] → 0, h :: t → S(f t)

}
:

• ̸⊢ len : [Q]⊸ nat but ⊢ len : [C]⊸ nat;

• Using shape: ⊢ λx .(x ⊗ len(shape(x))) : [Q]⊸ [Q]⊗ nat

|10⟩⟨18|

Some typing rules

Γ, x : C ;∅ ⊢ x : C Γ; x : Q ⊢ x : Q

Γ, x : C ;∆ ⊢ t : T

Γ;∆ ⊢ λx .t : C ⇒T

Γ;∆, x : Q ⊢ t : T ′

Γ;∆ ⊢ λx .t : Q ⊸T ′

Γ;∆ ⊢ ti : Q
∑n

i=1 |αi |2 = 1 ∀i ̸= j , ti ⊥ tj

Γ;∆ ⊢
∑n

i=1 αi · ti : Q

Back on len ≜ letrec f l = match l
{
[] → 0, h :: t → S(f t)

}
:

• ̸⊢ len : [Q]⊸ nat but ⊢ len : [C]⊸ nat;

• Using shape: ⊢ λx .(x ⊗ len(shape(x))) : [Q]⊸ [Q]⊗ nat

|10⟩⟨18|

Properties (1/2)

• Confluence and progress are verified

• Subject reduction holds only for terminating terms or classical
terms

• Orthogonality is Π0
2-complete, but can be decided polynomially

in most cases

|11⟩⟨18|

Properties (2/2)

Circuit compilation
Let t be a term of Hyrqlr , and v be an input. If tv in time
Poly(|v |), then there exists a circuit C of size Poly(|v |) computing
tv .

Termination and complexity certificate implies certificate on the
circuit

|12⟩⟨18|

3. Term rewrite systems and
resource analysis

|12⟩⟨18|

Term rewrite systems

• Represent a program as a set of rules R

Not |0⟩ → |1⟩ Not |1⟩ → |0⟩

• STTRS: extension for higher-order [Yam01]

• Active field for both termination and complexity analysis:
different existing techniques

• Compile Hyrql into TRS

|13⟩⟨18|

Translation idea

• Produce R inductively, producing rules for each branch of
qcase / match

• Keep track of what branch was taken

• When t is closed and higher-order: associate ft

• Restrict the syntax, but O(n) → O(n2)

|14⟩⟨18|

Translation idea

• Produce R inductively, producing rules for each branch of
qcase / match

• Keep track of what branch was taken

• When t is closed and higher-order: associate ft

λx .λy .qcase x
{
|0⟩ → |0⟩ ⊗ y , |1⟩ → |1⟩ ⊗ Not y

}

• Restrict the syntax, but O(n) → O(n2)

|14⟩⟨18|

Translation idea

• Produce R inductively, producing rules for each branch of
qcase / match

• Keep track of what branch was taken

• When t is closed and higher-order: associate ft

λx .λy .qcase x
{
|0⟩ → |0⟩ ⊗ y , |1⟩ → |1⟩ ⊗ Not y

}
R = {⊥ → |0⟩ ⊗ y}

• Restrict the syntax, but O(n) → O(n2)

|14⟩⟨18|

Translation idea

• Produce R inductively, producing rules for each branch of
qcase / match

• Keep track of what branch was taken

• When t is closed and higher-order: associate ft

λx .λy .qcase x
{
|0⟩ → |0⟩ ⊗ y , |1⟩ → |1⟩ ⊗ Not y

}
R = {⊥ → |1⟩ ⊗ Not y}

• Restrict the syntax, but O(n) → O(n2)

|14⟩⟨18|

Translation idea

• Produce R inductively, producing rules for each branch of
qcase / match

• Keep track of what branch was taken

• When t is closed and higher-order: associate ft

λx .λy .qcase x
{
|0⟩ → |0⟩ ⊗ y , |1⟩ → |1⟩ ⊗ Not y

}
R = {⊥ → |0⟩ ⊗ y : |0⟩ /x ,⊥ → |1⟩ ⊗ Not y : |1⟩ /x}

• Restrict the syntax, but O(n) → O(n2)

|14⟩⟨18|

Translation idea

• Produce R inductively, producing rules for each branch of
qcase / match

• Keep track of what branch was taken

• When t is closed and higher-order: associate ft

λx .λy .qcase x
{
|0⟩ → |0⟩ ⊗ y , |1⟩ → |1⟩ ⊗ Not y

}
R = {y → |0⟩ ⊗ y : |0⟩ /x , y → |1⟩ ⊗ Not y : |1⟩ /x}

• Restrict the syntax, but O(n) → O(n2)

|14⟩⟨18|

Translation idea

• Produce R inductively, producing rules for each branch of
qcase / match

• Keep track of what branch was taken

• When t is closed and higher-order: associate ft

λx .λy .qcase x
{
|0⟩ → |0⟩ ⊗ y , |1⟩ → |1⟩ ⊗ Not y

}
R = {|0⟩ y → |0⟩ ⊗ y , |1⟩ y → |1⟩ ⊗ Not y}

• Restrict the syntax, but O(n) → O(n2)

|14⟩⟨18|

Translation idea

• Produce R inductively, producing rules for each branch of
qcase / match

• Keep track of what branch was taken

• When t is closed and higher-order: associate ft

λx .λy .qcase x
{
|0⟩ → |0⟩ ⊗ y , |1⟩ → |1⟩ ⊗ Not y

}
R = {CNot |0⟩ y → |0⟩ ⊗ y , CNot |1⟩ y → |1⟩ ⊗ Not y}

• Restrict the syntax, but O(n) → O(n2)

|14⟩⟨18|

Translation idea

• Produce R inductively, producing rules for each branch of
qcase / match

• Keep track of what branch was taken

• When t is closed and higher-order: associate ft

λx .λy .qcase x
{
|0⟩ → |0⟩ ⊗ y , |1⟩ → |1⟩ ⊗ Not y

}
R = {CNot |0⟩ y → |0⟩ ⊗ y , CNot |1⟩ y → |1⟩ ⊗ Not y}

• Restrict the syntax, but O(n) → O(n2)

|14⟩⟨18|

Translation properties

Translation well-definedness
Let R = Translate(t). Then R is a well-defined STTRS, and is
computed in O(|t|4).

Semantics and complexity preservation
Let R = Translate(t). Then, t,R terminate on the same inputs,
to the same output. When they terminate in k, l steps, k = Θ(l).

|15⟩⟨18|

Translation properties

Translation well-definedness
Let R = Translate(t). Then R is a well-defined STTRS, and is
computed in O(|t|4).

Semantics and complexity preservation
Let R = Translate(t). Then, t,R terminate on the same inputs,
to the same output. When they terminate in k, l steps, k = Θ(l).

|15⟩⟨18|

Coming back on our example

Translate(bqwalk) yields the following system:
Repeat 0 → [] Repeat S(n) → |0⟩ :: Repeat n

BQWalk |1⟩ 0 → |1⟩ :: [] BQWalk |0⟩ n → |0⟩ :: Repeat n
BQWalk |1⟩ S(n) → |1⟩ :: BQWalk (Had |1⟩) n



• BQWalk terminates in size O(n) for inputs of size O(n).

• Quantum circuit is of polynomial size

• Use existing techniques to get termination and complexity
certificates: polynomial / quasi / sup-interpretations, path
orderings, size change principle...

|16⟩⟨18|

Coming back on our example

Translate(bqwalk) yields the following system:
Repeat 0 → [] Repeat S(n) → |0⟩ :: Repeat n

BQWalk |1⟩ 0 → |1⟩ :: [] BQWalk |0⟩ n → |0⟩ :: Repeat n
BQWalk |1⟩ S(n) → |1⟩ :: BQWalk (Had |1⟩) n


• BQWalk terminates in size O(n) for inputs of size O(n).

• Quantum circuit is of polynomial size

• Use existing techniques to get termination and complexity
certificates: polynomial / quasi / sup-interpretations, path
orderings, size change principle...

|16⟩⟨18|

4. Future work

|16⟩⟨18|

Future work

Contributions

• A quantum language with both control flows and general
recursion

• Link between runtime-complexity and quantum circuits size

• Translation to TRS, preserving semantics and
runtime-complexity

Future steps

• Adapt existing complexity results from TRS to fit in the
quantum context

• Characterize complexity classes (both for space and time)

• Provide an actual compilation algorithm

|17⟩⟨18|

Thanks for your attention !

|18⟩⟨18|

	Motivations
	Hyrql: a hybrid language
	Term rewrite systems and resource analysis
	Future work

