

Resource-Aware Hybrid Quantum Programming with General Recursion and Quantum Control

Kostia Chardonnet, Emmanuel Hainry, Romain Péchoux, Thomas Vinet

15/01/2026

LORIA, Nancy

Talk outline

Motivations

Hyrql: a hybrid language

Term rewrite systems and resource analysis

Future work

1. Motivations

Motivations

History of quantum algorithms:

- Based on the QRAM model (Shor): classical control

Motivations

History of quantum algorithms:

- Based on the QRAM model (Shor): classical control
- Then, interest in quantum control:

$$\text{QS}(U, V) = |0\rangle\langle 0| \otimes UV + |1\rangle\langle 1| \otimes VU$$

Motivations

History of quantum algorithms:

- Based on the QRAM model (Shor): classical control
- Then, interest in quantum control:

$$\text{QS}(U, V) = |0\rangle\langle 0| \otimes UV + |1\rangle\langle 1| \otimes VU$$

- Next steps: build a *hybrid language*, i.e. with both control flows

Contributions

Hyrql: a hybrid language with general recursion and classical control

Contributions

Hyrql: a hybrid language with general recursion and classical control

- Extension of Symmetric-Pattern Matching [SVV18]

Contributions

Hyrql: a hybrid language with general recursion and classical control

- Extension of Symmetric-Pattern Matching [SVV18]
- Typing discipline to ensure feasibility

Contributions

Hyrql: a hybrid language with general recursion and classical control

- Extension of Symmetric-Pattern Matching [SVV18]
- Typing discipline to ensure feasibility
- No measurement, but strictly more than a Circuit Description Language

Contributions

Hyrql: a hybrid language with general recursion and classical control

- Extension of Symmetric-Pattern Matching [SVV18]
- Typing discipline to ensure feasibility
- No measurement, but strictly more than a Circuit Description Language
- Polynomial termination ensures polynomial size circuits

Contributions

Hyrql: a hybrid language with general recursion and classical control

- Extension of Symmetric-Pattern Matching [SVV18]
- Typing discipline to ensure feasibility
- No measurement, but strictly more than a Circuit Description Language
- Polynomial termination ensures polynomial size circuits
- Amenable to static analysis through a translation to Term Rewrite Systems

2. Hyrql: a hybrid language

Syntax

$$t ::= x \mid \lambda x. t \mid t_1 t_2$$

Syntax

$$\begin{aligned} t ::= & x \mid \lambda x. t \mid t_1 t_2 \\ & \mid c(t_1, \dots, t_n) \mid \text{match } t \{ c_1(\vec{x_1}) \rightarrow t_1, \dots, c_n(\vec{x_n}) \rightarrow t_n \} \end{aligned}$$

- Example of standard constructs: $\text{unit}()$, pairs $a \otimes b$, numbers $0, S(n)$, lists $[]$, $h :: t$

Syntax

$$\begin{aligned} t ::= & x \mid \lambda x. t \mid t_1 t_2 \\ & \mid c(t_1, \dots, t_n) \mid \text{match } t \left\{ c_1(\vec{x_1}) \rightarrow t_1, \dots, c_n(\vec{x_n}) \rightarrow t_n \right\} \\ & \mid |0\rangle \mid |1\rangle \mid \text{qcase } t \left\{ |0\rangle \rightarrow t_0, |1\rangle \rightarrow t_1 \right\} \end{aligned}$$

- Example of standard constructs: `unit ()`, pairs $a \otimes b$, numbers $0, S(n)$, lists `[]`, $h :: t$

Syntax

$$\begin{aligned} t ::= & x \mid \lambda x. t \mid t_1 t_2 \\ & \mid c(t_1, \dots, t_n) \mid \text{match } t \left\{ c_1(\vec{x_1}) \rightarrow t_1, \dots, c_n(\vec{x_n}) \rightarrow t_n \right\} \\ & \mid |0\rangle \mid |1\rangle \mid \text{qcase } t \left\{ |0\rangle \rightarrow t_0, |1\rangle \rightarrow t_1 \right\} \\ & \mid \text{letrec } f x = t \end{aligned}$$

- Example of standard constructs: `unit ()`, pairs $a \otimes b$, numbers $0, S(n)$, lists `[]`, $h :: t$

Syntax

$$\begin{aligned} t ::= & x \mid \lambda x. t \mid t_1 t_2 \\ & \mid c(t_1, \dots, t_n) \mid \text{match } t \left\{ c_1(\vec{x_1}) \rightarrow t_1, \dots, c_n(\vec{x_n}) \rightarrow t_n \right\} \\ & \mid |0\rangle \mid |1\rangle \mid \text{qcase } t \left\{ |0\rangle \rightarrow t_0, |1\rangle \rightarrow t_1 \right\} \\ & \mid \text{letrec } f x = t \mid \sum_{i=1}^n \alpha_i \cdot t_i \end{aligned}$$

- Example of standard constructs: `unit ()`, pairs $a \otimes b$, numbers $0, S(n)$, lists `[]`, $h :: t$

Syntax

$$\begin{aligned} t ::= & x \mid \lambda x. t \mid t_1 t_2 \\ & \mid c(t_1, \dots, t_n) \mid \text{match } t \left\{ c_1(\vec{x_1}) \rightarrow t_1, \dots, c_n(\vec{x_n}) \rightarrow t_n \right\} \\ & \mid |0\rangle \mid |1\rangle \mid \text{qcase } t \left\{ |0\rangle \rightarrow t_0, |1\rangle \rightarrow t_1 \right\} \\ & \mid \text{letrec } f x = t \mid \sum_{i=1}^n \alpha_i \cdot t_i \mid \text{shape}(t) \end{aligned}$$

- Example of standard constructs: `unit()`, pairs $a \otimes b$, numbers $0, S(n)$, lists `[]`, $h :: t$
- `shape` extracts the classical structure:
 $|0\rangle :: |+\rangle :: [] \rightarrow () :: () :: []$

Simple quantum gate example

Standard gate: the NOT gate

$$\text{NOT} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Simple quantum gate example

Standard gate: the NOT gate

$$\text{NOT} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

In Hyrql:

$$\text{NOT} = \lambda x. \text{qcase } x \left\{ \begin{array}{l} |0\rangle \rightarrow |1\rangle \\ |1\rangle \rightarrow |0\rangle \end{array} \right\}$$

Abstraction

Simple quantum gate example

Standard gate: the NOT gate

$$\text{NOT} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

In Hyrql:

$$\text{NOT} = \lambda x. \text{qcase } x \left\{ \begin{array}{l} |0\rangle \rightarrow |1\rangle \\ |1\rangle \rightarrow |0\rangle \end{array} \right\}$$

Pattern-matching with two branches

Simple quantum gate example

Standard gate: the NOT gate

$$\text{NOT} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

In Hyrql:

$$\text{NOT} = \lambda x. \text{qcase } x \left\{ \begin{array}{l} |\text{0}\rangle \rightarrow |\text{1}\rangle \\ |\text{1}\rangle \rightarrow |\text{0}\rangle \end{array} \right\}$$

Output branches

Other examples

$$\text{cnot} \triangleq \lambda c. \lambda t. \text{qcase } c \left\{ \left| 0 \right\rangle \rightarrow \left| 0 \right\rangle \otimes t, \left| 1 \right\rangle \rightarrow \left| 1 \right\rangle \otimes \text{not } t \right\}$$

Other examples

$$\text{cnot} \triangleq \lambda c. \lambda t. \text{qcase } c \left\{ \left| 0 \right\rangle \rightarrow \left| 0 \right\rangle \otimes t, \left| 1 \right\rangle \rightarrow \left| 1 \right\rangle \otimes \text{not } t \right\}$$

$$\text{len} \triangleq \text{letrec } f \text{ } l = \text{match } l \left\{ \left[\right] \rightarrow 0, h :: t \rightarrow S(f t) \right\}$$

Other examples

$$\text{cnot} \triangleq \lambda c. \lambda t. \text{qcase } c \left\{ |0\rangle \rightarrow |0\rangle \otimes t, |1\rangle \rightarrow |1\rangle \otimes \text{not } t \right\}$$

$$\text{len} \triangleq \text{letrec } f \text{ } l = \text{match } l \left\{ [] \rightarrow 0, h :: t \rightarrow S(f \text{ } t) \right\}$$

$$\text{repeat} \triangleq \text{letrec } f \text{ } n = \text{match } n \left\{ 0 \rightarrow [], S(a) \rightarrow |0\rangle :: (f \text{ } a) \right\}$$

$$\text{bqwalk} \triangleq$$

$$\left\{ \begin{array}{l} |0\rangle \rightarrow |0\rangle :: (\text{repeat } n) \\ |1\rangle \rightarrow \text{match } n \left\{ \begin{array}{l} 0 \rightarrow |1\rangle :: [] \\ S(m) \rightarrow |1\rangle :: (f \text{ } |+\rangle \text{ } m) \end{array} \right\} \end{array} \right\}$$

$$\text{letrec } f \text{ } q = \lambda n. \text{qcase } q \left\{ \begin{array}{l} |0\rangle \rightarrow |0\rangle :: (\text{repeat } n) \\ |1\rangle \rightarrow \text{match } n \left\{ \begin{array}{l} 0 \rightarrow |1\rangle :: [] \\ S(m) \rightarrow |1\rangle :: (f \text{ } |+\rangle \text{ } m) \end{array} \right\} \end{array} \right\}$$

Operational semantics

- Follows a *Call-by-value* strategy

Operational semantics

- Follows a *Call-by-value* strategy
- $(\lambda x.t)v \rightsquigarrow t\{v/x\}$

Operational semantics

- Follows a *Call-by-value* strategy
- $(\lambda x.t)v \rightsquigarrow t\{v/x\}$
- $\text{qcase } |0\rangle \left\{ |0\rangle \rightarrow t_0, |1\rangle \rightarrow t_1 \right\} \rightsquigarrow t_0$

Operational semantics

- Follows a *Call-by-value* strategy
- $(\lambda x.t)v \rightsquigarrow t\{v/x\}$
- $\text{qcase } |0\rangle \left\{ |0\rangle \rightarrow t_0, |1\rangle \rightarrow t_1 \right\} \rightsquigarrow t_0$
- $\text{qcase } |1\rangle \left\{ |0\rangle \rightarrow t_0, |1\rangle \rightarrow t_1 \right\} \rightsquigarrow t_1$

Operational semantics

- Follows a *Call-by-value* strategy
- $(\lambda x.t)v \rightsquigarrow t\{v/x\}$
- $\text{qcase } |0\rangle \left\{ |0\rangle \rightarrow t_0, |1\rangle \rightarrow t_1 \right\} \rightsquigarrow t_0$
- $\text{qcase } |1\rangle \left\{ |0\rangle \rightarrow t_0, |1\rangle \rightarrow t_1 \right\} \rightsquigarrow t_1$

$$\text{qcase } \alpha \cdot |0\rangle + \beta \cdot |1\rangle \left\{ |0\rangle \rightarrow t_0, |1\rangle \rightarrow t_1 \right\} \rightsquigarrow \alpha \cdot t_0 + \beta \cdot t_1$$

Operational semantics

- Follows a *Call-by-value* strategy
- $(\lambda x.t)v \rightsquigarrow t\{v/x\}$
- $\text{qcase } |0\rangle \left\{ |0\rangle \rightarrow t_0, |1\rangle \rightarrow t_1 \right\} \rightsquigarrow t_0$
- $\text{qcase } |1\rangle \left\{ |0\rangle \rightarrow t_0, |1\rangle \rightarrow t_1 \right\} \rightsquigarrow t_1$

$$\text{qcase } \alpha \cdot |0\rangle + \beta \cdot |1\rangle \left\{ |0\rangle \rightarrow t_0, |1\rangle \rightarrow t_1 \right\} \rightsquigarrow \alpha \cdot t_0 + \beta \cdot t_1$$

- Superposition: parallel reduction

Type system

$$T ::= \text{Qbit} \mid B \mid T \multimap T \mid T \Rightarrow T$$

- Constructed types $B : \text{nat}, A \otimes B, \text{list}(B)$
- Both linear and non-linear
- Typing judgment $\Gamma; \Delta \vdash t : T$, with a linear context Δ and a non-linear context Γ
- Orthogonality predicate $s \perp t$: same classical structure and $\langle s, t \rangle = 0$

Some typing rules

$$\frac{}{\Gamma, x : C; \emptyset \vdash x : C}$$

$$\frac{}{\Gamma; x : Q \vdash x : Q}$$

$$\frac{\Gamma, x : C; \Delta \vdash t : T}{\Gamma; \Delta \vdash \lambda x. t : C \Rightarrow T}$$

$$\frac{\Gamma; \Delta, x : Q \vdash t : T'}{\Gamma; \Delta \vdash \lambda x. t : Q \multimap T'}$$

$$\frac{\Gamma; \Delta \vdash t_i : Q \quad \sum_{i=1}^n |\alpha_i|^2 = 1 \quad \forall i \neq j, \quad t_i \perp t_j}{\Gamma; \Delta \vdash \sum_{i=1}^n \alpha_i \cdot t_i : Q}$$

Some typing rules

$$\frac{}{\Gamma, x : C; \emptyset \vdash x : C}$$

$$\frac{}{\Gamma; x : Q \vdash x : Q}$$

$$\frac{\Gamma, x : C; \Delta \vdash t : T}{\Gamma; \Delta \vdash \lambda x. t : C \Rightarrow T}$$

$$\frac{\Gamma; \Delta, x : Q \vdash t : T'}{\Gamma; \Delta \vdash \lambda x. t : Q \multimap T'}$$

$$\frac{\Gamma; \Delta \vdash t_i : Q \quad \sum_{i=1}^n |\alpha_i|^2 = 1 \quad \forall i \neq j, \quad t_i \perp t_j}{\Gamma; \Delta \vdash \sum_{i=1}^n \alpha_i \cdot t_i : Q}$$

Back on `len` \triangleq `letrec` $f\ l = \text{match}\ l\ \{\text{[}]\rightarrow 0, h::t\rightarrow S(f\ t)\}$:

- $\not\vdash \text{len} : [Q] \multimap \text{nat}$ but $\vdash \text{len} : [C] \multimap \text{nat}$;
- Using `shape`: $\vdash \lambda x. (x \otimes \text{len}(\text{shape}(x))) : [Q] \multimap [Q] \otimes \text{nat}$

Properties (1/2)

- Confluence and progress are verified
- Subject reduction holds only for terminating terms or classical terms
- Orthogonality is Π_2^0 -complete, but can be decided polynomially in most cases

Circuit compilation

Let t be a term of Hyrql_r , and v be an input. If tv in time $\text{Poly}(|v|)$, then there exists a circuit \mathcal{C} of size $\text{Poly}(|v|)$ computing tv .

Termination and complexity certificate implies certificate on the circuit

3. Term rewrite systems and resource analysis

- Represent a program as a set of rules \mathcal{R}

$$\text{Not } |0\rangle \rightarrow |1\rangle \quad \text{Not } |1\rangle \rightarrow |0\rangle$$

- STTRS: extension for higher-order [Yam01]
- Active field for both termination and complexity analysis:
different existing techniques
- **Compile Hyrql into TRS**

Translation idea

- Produce \mathcal{R} inductively, producing rules for each branch of `qcase` / `match`
- Keep track of what branch was taken
- When t is closed and higher-order: associate f_t

Translation idea

- Produce \mathcal{R} inductively, producing rules for each branch of `qcase` / `match`
- Keep track of what branch was taken
- When t is closed and higher-order: associate f_t

$$\lambda x. \lambda y. \text{qcase } x \left\{ |0\rangle \rightarrow |0\rangle \otimes y, |1\rangle \rightarrow |1\rangle \otimes \text{Not } y \right\}$$

Translation idea

- Produce \mathcal{R} inductively, producing rules for each branch of `qcase` / `match`
- Keep track of what branch was taken
- When t is closed and higher-order: associate f_t

$$\lambda x. \lambda y. \text{qcase } x \left\{ |0\rangle \rightarrow |0\rangle \otimes y, |1\rangle \rightarrow |1\rangle \otimes \text{Not } y \right\}$$
$$\mathcal{R} = \{ \perp \rightarrow |0\rangle \otimes y \}$$

Translation idea

- Produce \mathcal{R} inductively, producing rules for each branch of `qcase` / `match`
- Keep track of what branch was taken
- When t is closed and higher-order: associate f_t

$$\lambda x. \lambda y. \text{qcase } x \left\{ |0\rangle \rightarrow |0\rangle \otimes y, |1\rangle \rightarrow |1\rangle \otimes \text{Not } y \right\}$$
$$\mathcal{R} = \{ \perp \rightarrow |1\rangle \otimes \text{Not } y \}$$

Translation idea

- Produce \mathcal{R} inductively, producing rules for each branch of `qcase` / `match`
- Keep track of what branch was taken
- When t is closed and higher-order: associate f_t

$$\lambda x. \lambda y. \text{qcase } x \left\{ |0\rangle \rightarrow |0\rangle \otimes y, |1\rangle \rightarrow |1\rangle \otimes \text{Not } y \right\}$$
$$\mathcal{R} = \{ \perp \rightarrow |0\rangle \otimes y : |0\rangle / x, \perp \rightarrow |1\rangle \otimes \text{Not } y : |1\rangle / x \}$$

Translation idea

- Produce \mathcal{R} inductively, producing rules for each branch of `qcase` / `match`
- Keep track of what branch was taken
- When t is closed and higher-order: associate f_t

$$\lambda x. \lambda y. \text{qcase } x \left\{ |0\rangle \rightarrow |0\rangle \otimes y, |1\rangle \rightarrow |1\rangle \otimes \text{Not } y \right\}$$

$$\mathcal{R} = \{y \rightarrow |0\rangle \otimes y : |0\rangle / x, y \rightarrow |1\rangle \otimes \text{Not } y : |1\rangle / x\}$$

Translation idea

- Produce \mathcal{R} inductively, producing rules for each branch of `qcase` / `match`
- Keep track of what branch was taken
- When t is closed and higher-order: associate f_t

$$\lambda x. \lambda y. \text{qcase } x \left\{ |0\rangle \rightarrow |0\rangle \otimes y, |1\rangle \rightarrow |1\rangle \otimes \text{Not } y \right\}$$

$$\mathcal{R} = \{|0\rangle \ y \rightarrow |0\rangle \otimes y, |1\rangle \ y \rightarrow |1\rangle \otimes \text{Not } y\}$$

Translation idea

- Produce \mathcal{R} inductively, producing rules for each branch of `qcase` / `match`
- Keep track of what branch was taken
- When t is closed and higher-order: associate f_t

$$\lambda x. \lambda y. \text{qcase } x \left\{ |0\rangle \rightarrow |0\rangle \otimes y, |1\rangle \rightarrow |1\rangle \otimes \text{Not } y \right\}$$
$$\mathcal{R} = \{ \text{CNot } |0\rangle y \rightarrow |0\rangle \otimes y, \text{CNot } |1\rangle y \rightarrow |1\rangle \otimes \text{Not } y \}$$

Translation idea

- Produce \mathcal{R} inductively, producing rules for each branch of `qcase` / `match`
- Keep track of what branch was taken
- When t is closed and higher-order: associate f_t

$$\lambda x. \lambda y. \text{qcase } x \left\{ |0\rangle \rightarrow |0\rangle \otimes y, |1\rangle \rightarrow |1\rangle \otimes \text{Not } y \right\}$$
$$\mathcal{R} = \{ \text{CNot } |0\rangle y \rightarrow |0\rangle \otimes y, \text{CNot } |1\rangle y \rightarrow |1\rangle \otimes \text{Not } y \}$$

- Restrict the syntax, but $\mathcal{O}(n) \rightarrow \mathcal{O}(n^2)$

Translation well-definedness

Let $\mathcal{R} = \text{Translate}(t)$. Then \mathcal{R} is a well-defined STTRS, and is computed in $\mathcal{O}(|t|^4)$.

Translation well-definedness

Let $\mathcal{R} = \text{Translate}(t)$. Then \mathcal{R} is a well-defined STTRS, and is computed in $\mathcal{O}(|t|^4)$.

Semantics and complexity preservation

Let $\mathcal{R} = \text{Translate}(t)$. Then, t, \mathcal{R} terminate on the same inputs, to the same output. When they terminate in k, l steps, $k = \Theta(l)$.

Coming back on our example

Translate(bqwalk) yields the following system:

$$\left\{ \begin{array}{ll} \text{Repeat } 0 \rightarrow [] & \text{Repeat } S(n) \rightarrow |0\rangle :: \text{Repeat } n \\ \text{BQWalk } |1\rangle 0 \rightarrow |1\rangle :: [] & \text{BQWalk } |0\rangle n \rightarrow |0\rangle :: \text{Repeat } n \\ \text{BQWalk } |1\rangle S(n) \rightarrow |1\rangle :: \text{BQWalk (Had } |1\rangle) n \end{array} \right\}$$

Coming back on our example

Translate(bqwalk) yields the following system:

$$\left\{ \begin{array}{ll} \text{Repeat } 0 \rightarrow [] & \text{Repeat } S(n) \rightarrow |0\rangle :: \text{Repeat } n \\ \text{BQWalk } |1\rangle 0 \rightarrow |1\rangle :: [] & \text{BQWalk } |0\rangle n \rightarrow |0\rangle :: \text{Repeat } n \\ \text{BQWalk } |1\rangle S(n) \rightarrow |1\rangle :: \text{BQWalk (Had } |1\rangle) n \end{array} \right\}$$

- BQWalk terminates in size $\mathcal{O}(n)$ for inputs of size $\mathcal{O}(n)$.
- Quantum circuit is of polynomial size
- Use existing techniques to get termination and complexity certificates: polynomial / quasi / sup-interpretations, path orderings, size change principle...

4. Future work

Future work

Contributions

- A quantum language with both control flows and general recursion
- Link between runtime-complexity and quantum circuits size
- Translation to TRS, preserving semantics and runtime-complexity

Future steps

- Adapt existing complexity results from TRS to fit in the quantum context
- Characterize complexity classes (both for space and time)
- Provide an actual compilation algorithm

Thanks for your attention !

