Resource-Aware Hybrid Quantum
Programming with General Recursion and
Quantum Control

Kostia Chardonnet, Emmanuel Hainry, Romain Péchoux, Thomas Vinet

15/01/2026

LORIA, Nancy

[1)(18|

Talk outline

Motivations
Hyrql: a hybrid language
Term rewrite systems and resource analysis

Future work

[2)(18|

1. Motivations

[2)(18|

History of quantum algorithms:

® Based on the QRAM model (Shor): classical control

[3)(18|

History of quantum algorithms:

® Based on the QRAM model (Shor): classical control

® Then, interest in quantum control:

QS(U, V) = |0) (0| ® UV + [1) (1| ® VU

[3)(18|

History of quantum algorithms:

® Based on the QRAM model (Shor): classical control

® Then, interest in quantum control:

QS(U, V) = |0) (0| ® UV + [1) (1| ® VU

® Next steps: build a hybrid language, i.e. with both control
flows

[3)(18|

Contributions

Hyrql: a hybrid language with general recursion and classical
control

|4)(18|

Contributions

Hyrql: a hybrid language with general recursion and classical
control

® Extension of Symmetric-Pattern Matching [SVV18]

|4)(18|

Contributions

Hyrql: a hybrid language with general recursion and classical
control

® Extension of Symmetric-Pattern Matching [SVV18]

® Typing discipline to ensure feasibility

|4)(18|

Contributions

Hyrql: a hybrid language with general recursion and classical
control

® Extension of Symmetric-Pattern Matching [SVV18]

® Typing discipline to ensure feasibility

® No measurement, but strictly more that a Circuit Description
Language

|4)(18|

Contributions

Hyrql: a hybrid language with general recursion and classical
control

® Extension of Symmetric-Pattern Matching [SVV18]

Typing discipline to ensure feasibility

® No measurement, but strictly more that a Circuit Description
Language

Polynomial termination ensures polynomial size circuits

|4)(18|

Contributions

Hyrql: a hybrid language with general recursion and classical

control

Extension of Symmetric-Pattern Matching [SVV18]

Typing discipline to ensure feasibility

No measurement, but strictly more that a Circuit Description
Language

Polynomial termination ensures polynomial size circuits

Amenable to static analysis through a translation to Term
Rewrite Systems

|4)(18|

2. Hyrql: a hybrid language

|4)(18|

ti=x | Ax.t | titp

[5)(18|

ti=x | Ax.t | titp

| c(tr,. ..o ty) | matcht {ci(X4) = t1,...,ca(Xn) — ta}

® Example of standard constructs: unit (), pairs a ® b, numbers
0,5(n), lists [],h:: t

[5)(18|

ti=x | Ax.t | titp

| c(tr,. ..o ty) | matcht {ci(X4) = t1,...,ca(Xn) — ta}

10) | 11) | qcaset {j0) = to.11) = 1}

® Example of standard constructs: unit (), pairs a ® b, numbers
0,5(n), lists [],h:: t

[5)(18|

ti=x | Ax.t | titp

| c(tr,... ta) | matcht {c1(X]) = t1,...,ca(Xn) = tn}
10 | 11) | qcaset {[0) = to,[1) = 11}
| letrecfx =t

® Example of standard constructs: unit (), pairs a ® b, numbers

0,5(n), lists [],h:: t

[5)(18|

ti=x | Ax.t | titp

| c(tr,.-.,tn) | matcht{cl(x_f) — tl,...,c,,(x_>,,) - tn}
110) | 11) | qcaset{[0) = to,[1) — &1 |

| letrecfx=1t | > -t

® Example of standard constructs: unit (), pairs a ® b, numbers
0,5(n), lists [],h:: t

[5)(18|

ti=x | Ax.t | titp
| c(tr,.-.,tn) | matcht{cl(x_f) —t1,.. .,c,,(x_>,,) - tn}
110) | 11) | qcaset{[0) = to,[1) — &1 |

| letrecfx =1t | > [-t | shape(t)

® Example of standard constructs: unit (), pairs a ® b, numbers
0,5(n), lists [],h:: t
® shape extracts the classical structure:

0) = [+) = [1= 0011

[5)(18|

Simple quantum gate example

Standard gate: the NOT gate

0 1
NOT =

[6)(18|

Simple quantum gate example
Standard gate: the NOT gate

0 1
NOT =

NOT = Ax.qcase x 0) = 11)
- 1)~ o)

In Hyrql:

Abstraction

[6)(18|

Simple quantum gate example
Standard gate: the NOT gate
01
NOT =

NOT = Ax.qcase x 0) = 1)
K b 10)

In Hyrql:

Pattern-matching with two branches

[6)(18|

Simple quantum gate example
Standard gate: the NOT gate
01
NOT =

0) = [1)
NOT = Ax.qcase x
1) = 10)

In Hyrql:

Output branches

[6)(18|

Other examples

cnot £ \c.\t.qcasec {\0> —0)®t,|1) — |1) @ not t}

[7)(18|

Other examples

cnot £ \c.\t.qcasec {\0> —0)®t,|1) — |1) @ not t}

len £ letrecf/ :match/{[] = 0,h:t— S(f t)}

[7)(18|

Other examples

cnot £ \c.\t.qcasec {\0> —0)®t,|1) — |1) @ not t}

len £ letrecf/ :match/{[] = 0,h:t— S(f t)}

repeat = letrec f n = matchn {0 —[],5(a) = [0) = (f a)}
bqwalké
|0) — |0) :: (repeat n)
0—11) =[] }
S(m) — [1) = (f |[+) m)

letrec f g = An.qcaseq
|1) — matchn

[7)(18|

Operational semantics

® Follows a Call-by-value strategy

[8)(18|

Operational semantics

® Follows a Call-by-value strategy
® (Ax.t)v ~ t{v/x}

[8)(18|

Operational semantics

® Follows a Call-by-value strategy
® (Ax.t)v ~ t{v/x}
® gcase |0) {|0> — t,]1) — tl} ~ o

[8)(18|

Operational semantics

Follows a Call-by-value strategy
(Ax.t)v ~ t{v/x}
gcase |0) {|0> — t,]1) — tl} ~ o

qcase |1) {]0) — tp,]1) — tl} ~ 1

[8)(18|

Operational semantics

Follows a Call-by-value strategy
(Ax.t)v ~ t{v/x}
gcase |0) {|0> — t,]1) — tl} ~ o

qcase |1) {]0) — tp,]1) — tl} ~ 1

qease - [0)+ 511 {]0) = to, 1) 5 1}~ o to+ Bty

[8)(18|

Operational semantics

Follows a Call-by-value strategy
(Ax.t)v ~ t{v/x}
gcase |0) {|0> — t,]1) — tl} ~ o

qcase |1) {]0) — to,|1) — tl} ~ by

qease - [0)+ 511 {]0) = to, 1) 5 1}~ o to+ Bty

Superposition: parallel reduction

[8)(18|

Type system

Tu=Qbit | B| T—T|T=T

Constructed types B : nat, A® B,list(B)

Both linear and non-linear

Typing judgment I'; A+ t: T, with a linear context A and a

non-linear context I

Orthogonality predicate s L t: same classical structure and
(s,t) =0

[9)(18|

Some typing rules

MNx:C,okx:C NMx:QFEx:Q

Mx:CARt: T A x:QFt: T
NMAFM.t:C=T MAFM.t: Q —oT'

KARL:Q Y i laP=1 Vi#j, tiLl¢g
GAEY T jai-ti:Q

[10)(18|

Some typing rules

MNx:C,okx:C NMx:QFEx:Q

Mx:CARt: T A x:QFt: T
NMAFM.t:C=T MAFM.t: Q —oT'

KARL:Q Y i laP=1 Vi#j, tiLl¢g
GAEY T jai-ti:Q

Back on len £ letrecf |/ :match/{[] —=0,h:t— S(f t)} ;

® {/1len: [Q] — nat but - len: [C] —o nat;
® Using shape: F Ax.(x ® len(shape(x))) : [Q] — [Q] ® nat

[10)(18|

Properties (1/2)

® Confluence and progress are verified

® Subject reduction holds only for terminating terms or classical
terms

® Orthogonality is M9-complete, but can be decided polynomially
in most cases

[11)(18|

Properties (2/2)

Circuit compilation

Let t be a term of Hyrql,, and v be an input. If tv in time
Poly(|v|), then there exists a circuit C of size Poly(|v|) computing

tv.

Termination and complexity certificate implies certificate on the

circuit

|12)(18|

3. Term rewrite systems and
resource analysis

[12)(18|

Term rewrite systems

® Represent a program as a set of rules R

Not |0) — |1) Not |1) — |0)

STTRS: extension for higher-order [YamO01]

Active field for both termination and complexity analysis:
different existing techniques

Compile Hyrql into TRS

[13)(18|

Translation idea

® Produce R inductively, producing rules for each branch of
qcase / match
® Keep track of what branch was taken

® \When t is closed and higher-order: associate f;

|14)(18|

Translation idea

® Produce R inductively, producing rules for each branch of
qcase / match
® Keep track of what branch was taken

® \When t is closed and higher-order: associate f;

AX.\y.qcase x {|0> —=10)®y,|1) — |1) ® Not y}

|14)(18|

Translation idea

® Produce R inductively, producing rules for each branch of
qcase / match
® Keep track of what branch was taken

® \When t is closed and higher-order: associate f;

0) @y
R={L—=|0)®y}

|14)(18|

Translation idea

® Produce R inductively, producing rules for each branch of
qcase / match
® Keep track of what branch was taken

® \When t is closed and higher-order: associate f;

|1) ® Not y
R={L—|1) @Noty}

|14)(18|

Translation idea

® Produce R inductively, producing rules for each branch of
qcase / match
® Keep track of what branch was taken

® \When t is closed and higher-order: associate f;

qcasex{|0> —0)®y,[|1) = 1) ®Noty}
R={L—=]0)®@y:]0)/x,L —|1)@Noty:|1)/x}

|14)(18|

Translation idea

® Produce R inductively, producing rules for each branch of
qcase / match
® Keep track of what branch was taken

® \When t is closed and higher-order: associate f;

)\y.qcasex{|0> =10y ®y,[|1) — 1) ®Noty}
R={y =100 @y:[0)/x,y = [1) @Noty: 1) /x}

|14)(18|

Translation idea

® Produce R inductively, producing rules for each branch of
qcase / match
® Keep track of what branch was taken

® \When t is closed and higher-order: associate f;

)\x.)\y.qcasex{|0> =0y ®y,|1) = 1) ®Noty}
R={0)y = [0)®y,|1) y = |1) ®Not y}

|14)(18|

Translation idea

® Produce R inductively, producing rules for each branch of
qcase / match
® Keep track of what branch was taken

® \When t is closed and higher-order: associate f;

AX.\y.qcase x {|0> —10)®y,|1) = |1) ® Not y}
R = {CNot |0) y — |0) ® y,CNot |1) y — |1) @ Not y}

|14)(18|

Translation idea

Produce R inductively, producing rules for each branch of

qcase / match

Keep track of what branch was taken

When t is closed and higher-order: associate f;

AX.\y.qcase x {|0> —10)®y,|1) = |1) ® Not y}
R = {CNot |0) y — |0) ® y,CNot |1) y — |1) @ Not y}

Restrict the syntax, but O(n) — O(n?)

|14)(18|

Translation properties

Translation well-definedness

Let R = Translate(t). Then R is a well-defined STTRS, and is
computed in O(|t|*).

|15)(18|

Translation properties

Translation well-definedness

Let R = Translate(t). Then R is a well-defined STTRS, and is
computed in O(|t|*).

Semantics and complexity preservation

Let R = Translate(t). Then, t,R terminate on the same inputs,
to the same output. When they terminate in k, / steps, k = (/).

|15)(18|

Coming back on our example

Translate(bgwalk) yields the following system:

Repeat 0 — [] Repeat S(n) — |0) :: Repeat n
BQWalk [1) 0 — [1) =z [] BQWalk |0) n — |0) :: Repeat n
BQWalk |1) S(n) — |1) :: BQWalk (Had |1)) n

[16)(18|

Coming back on our example

Translate(bgwalk) yields the following system:

Repeat 0 — [] Repeat S(n) — |0) :: Repeat n
BQWalk [1) 0 — [1) =z [] BQWalk |0) n — |0) :: Repeat n
BQWalk |1) S(n) — |1) :: BQWalk (Had |1)) n

® BQWalk terminates in size O(n) for inputs of size O(n).
® Quantum circuit is of polynomial size

® Use existing techniques to get termination and complexity
certificates: polynomial / quasi / sup-interpretations, path
orderings, size change principle...

[16)(18|

4. Future work

[16)(18|

Contributions
® A quantum language with both control flows and general
recursion
® |ink between runtime-complexity and quantum circuits size
® Translation to TRS, preserving semantics and
runtime-complexity
Future steps
® Adapt existing complexity results from TRS to fit in the
quantum context

® Characterize complexity classes (both for space and time)

® Provide an actual compilation algorithm

[17)(18|

Thanks for your attention !
OO
g;" e :'[?3,;,‘
©EHEE:

|18)(18]

	Motivations
	Hyrql: a hybrid language
	Term rewrite systems and resource analysis
	Future work

