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Our contribution

‘ * The first ideal resource in abstract cryptography
* Overhead-free secure verification protocol
l for observable estimation tasks
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Towards secure verifiable near-term quantum advantage



quality of qubits

Towards practical quantum utility
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Landmark experiments
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Fig. 3: Classically verifiable expectation values from 127-qubit, depth-15 Clifford and

non-Clifford circuits.
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[IBM’s demonstration, Nature 2024]
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Verifiability of quantum advantage

Definition of quantum advantage [Lanes+25]
1. demonstrably superior to classical computational resources
2. outputs can be rigorously validated
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[Google’s demonstration, Nature 2025]

Q. How to verify the outcome of classically intractable problem?



Secure delegated quantum computation

— to untrusted and unreliable server

A single qubits
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How to ensure the integrity and confidentiality of
delegated quantum computation?



Universal Blind

Quantum Computation
(UBQC) [BFKO9]

e Perfect blindness

Perfect security Iin
abstract cryptography (AC)
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The Client can prepare-and-send
single qubits

Blindness:
secret parametersin @, | +, ),

Only Client can decode them
within the MBQC process



Universal Blind e Perfect blindness

Quantum Computation
(UBQC) [BFK09] Perfect AC security

Client Server

Verifiable Blind * Perfect blindness * Embed traps into MBQC
Quantum Computation « Exponential verifiability * Require fault-tolerance
BQC) [FK12 . . for security amplification
(VBQC) [ | Exponential AC security . Quantum output
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Universal Blind * Perfect blindness
Quantum Computation

(UBQC) [BFK09] Perfect AC security
Client Server
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Exponential AC security e Quantum output
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Exponential AC security
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Universal Blind
Quantum Computation
(UBQC) [BFKO9]

Verifiable Blind
Quantum Computation
(VBQC) [FK12]

Robust VBQC
(RVBQC) [LMKO21]

e Perfect blindness

Perfect AC security

* Perfect blindness
* Exponential verifiability

Exponential AC security

* Perfect blindness
* Exponential verifiability

Exponential AC security
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 Embed traps into MBQC

 Require fault-tolerance for
security amplification

* Quantum output

* Separated test/target runs
 BQP decision problems

Verifying continuous-valued output with RVBQC
requires additional circuit overhead.



What is the issue?

— Either inverse polynomial security or heavy space overhead
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Universal Blind
Quantum Computation
(UBQC) [BFKO9]

Verifiable Blind
Quantum Computation
(VBQC) [FK12]

Robust VBQC
(RVBQC) [LMKO21]

Verifiable Blind
Observable Estimation
(VBOE) [YKO25]

e Perfect blindness

Perfect AC security

* Perfect blindness
* Exponential verifiability

Exponential AC security

* Perfect blindness
* Exponential verifiability

Exponential AC security
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 Embed traps into MBQC
 Require QEC for security
* Quantum output

* Separated test/target runs
 BQP decision problems

* Separated test/target runs
 Observable estimation



Task: observable estimation

Given: Observable O, number of samples N, and allowed estimation bias «.

Without loss of generality,

Target: To estimate Tr [pO] forareferencestate p. | o= |1 y(+ 1= |- -]

1 N
Output: Empirical mean o = ~ Z y, where y. € {—1,1}.
=1

Performance: Estimation confidence Pr l 0—Tr|pO|| > 6] < 9.

— “A protocol (€, 0)-estimates Tr pO|”.



Abstract cryptography

- 1 J)
Protocol is “c-secure
If distinguishing advantage < ¢

Distinguisher
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Proposed ideal resource
Secure Delegated Observable Estimation (SDOE)

N
Client’s I & Client’s
input If e =0, seto := 2 Z v, where y; ~ SB(p) output
¢ =1
CeG If e = 1, compute s € R U {Abort} with (o, ) o € R U {Abort)

If s = Abort or |s—Tr[pO]| > €, set 0 := Abort

Otherwise, set o ;= s

| Server’s interface

e {0,1};Ife=1, (o, F)

— When accepted, the SDOE resource (¢, 0)-estimates Tr pO|.



New conceptual tool in abstract cryptography

SDQC Resource [kKkLo22], [DFPR14]

Client’s Client’s

input output
If ¢ = 0, set 0 := correct output .

R R discrete
& > = ] and d = 0, set 0o := correct outpu =R\
output
fe =1andd =1, set 0 := Abort
‘ Server’s interface ‘
e {0,1} fe=1,d e {0,1}

Strictly correct discrete output

SDOE Resource [This work]

N,
Client’s I Client’s
input Ife =0,seto:= I Z y;, Where y; ~ B(p) output
¢ =1
CeG If c = 1, compute s € R U {Abort} o € R U {Abort}
If s = Abort or |s—Tr[pO]| > €, set 0o := Abort _
continuous
Otherwise, set 0 := s
output

‘ Server’s interface ‘

€ {0,1} ife =1, (o, )

# Allowing biased output (up to an allowed extent)



Proposed secure protocol
Verifiable Blind Observable Estimation (VBOE)

Test rounds: if satisfied, Accept, otherwise, return Abort.

‘-_ -----------------------------------------------------------------------------------------------

+1 +1 +1 —1 N rounds
. A .
Computation rounds: If Accept, return s = " > 3 to estimate Tr[pO].
¢ =1



Main theorem

Exponential composable security of VBOE

VBOE (€, 0)-estimates Tr [pO] with exponentially small 0 to N, and N..

Exponentially small distinguishing advantage from SDOE,
i.e.0 = O (e_NC + e_Nl‘).

‘-_ -----------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------

L +1 +1 +1 ~1; N rounds

-------------------------------------------------------------------------------------------------



Proof sketch

Correctness (vs honest, noise-free Server) Security (vs malicious Server)
—> ZClient —> —> —> —> T lient — — —
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UBQC SDOE ........................................... * +
feeees | ........... I ........... | ........... I ................ UBQC UBQC,S
—> TServer —> —> — ‘ I ‘ I Simulator
1 f

 VBOE always accepts

. SDOE further checks * Using composability of UBQC

6—Tr[p0]| > €

l Difference in Accept/Abort probability l Difference in Accept/Abort probability

» _ o2 - - v i
Pr||lo—"TTr [,00] > el <2exp ( > NC> Distinguishability: O (e c+ e f)



Impact of this work

Bridge between crypto-protocols and key quantum utility

* A new avenue for cryptographic security analysis
of near-term quantum-classical hybrid techniques with expectation values

* The only known efficient overhead-free verification
of near-term tasks with potential guantum advantage

* A convergence between foundational cryptographic theory
and physically motivated quantum tasks
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Future work

A broad class of applications of promising interest

* |ntegration with gquantum error mitigation and quantum-classical hybrid approaches

* \erifiable quantum advantage experiments on current hardware
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Link to our paper: https://www.arxiv.org/abs/2510.08548
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